Тепловые машины: основные части и принципы действия тепловых машин; коэффициент полезного действия тепловой машины и пути его повышения; проблемы энергетики и охрана окружающей среды.

Лекция: Принципы действия тепловых машин


Тепловая машина

Тепловая машина - это система, которая может превратить тепло в работу или же наоборот, совершает работу для получения тепла.

Существует два основных вида тепловых машин:


1. Системы, способные превращать тепло в работу. Такие системы называются тепловыми двигателями . Данные тепловые машины лежат в основе двигателей на автомобилях. Чтобы машина ехала, двигатель должен совершать работу. Для совершения данной работы происходит сгорание топлива.


2. Системы, способные охлаждать тела, за счет совершения работы внешних сил. Такие системы называются холодильными машинами. В основе нашего домашнего холодильника лежит принцип холодильной машины. Любое тепло, которое подводится к ней, выводиться за пределы машины за счет совершения работы внешними силами.


Любая тепловая машина состоит из тела, которое совершает работу, холодильника и нагревателя.


Тепловые двигатели


В основе данной машины лежит принцип извлечения работы из беспрерывного движения структурных единиц вещества. Данное изобретение открыло двери в эру нового технического прогресса.

Рабочим телом для данной машины является газ. Во время его нагревания поршень двигателя передвигается и тем самым совершает работу. Чтобы газ расширился, к нему подводят нагреватель. Расширение будет происходить только в том случае, когда температура газа будет больше, чем температура окружающей среды.


Во время сгорания топлива выделяется достаточная энергия, большая часть которой идет на совершение работы, поэтому

Q1 = A1


Теперь давайте разберемся, какую роль играет холодильник в тепловой машине. Для того, чтобы машина постоянно работала, необходимо, чтобы газ расширялся и сужался - в таком случае поршень будет периодически возвращаться в исходное положение. Поэтому холодильник охлаждает газ, передавая ему теплоту: Q2 = A2

В данном случае полезная работа будет равна: A = A1 − A2

Чтобы работа охлаждения была меньше, её следует совершать при меньшем давлении, как показано на графике.

Где Q1 - Q2 = А, А - полезная работа.

Стоит отметить, что КПД всегда меньше единицы. Более того, зачастую нами используются тепловые двигатели, КПД которых меньше 50%.


Холодильные машины


Как было сказано в предыдущих разделах, нельзя заставить некоторую систему самопроизвольно передавать тепло от менее нагретого тела к более нагретому. Однако ключевое слово здесь - самопроизвольно. С помощью внешнего источника работы это все-таки возможно. Холодильная машина производит именно такие процессы.

Принцип действия тепловых машин. Достаточно несложно получить тепловую энергию за счет работы, например достаточно потереть два предмета друг о друга и выделится тепловая энергия.

Однако получить механическую работу за счет тепловой энергии гораздо труднее, и практически полезное устройство для этого было изобретено лишь около 1700 г. Тепловой двигатель - это любое устройство, преобразующее тепловую энергию в механическую работу. Основная идея лежащая в основе любого теплового двигателя, состоит в следующем: механическая энергия может быть получена за счет тепловой, только если дать возможность тепловой энергии переходить из области с высокой температурой в область с низкой температурой, причем в процессе этого перехода часть тепловой энергии может перейти в механическую работу.

В настоящее время используется множество тепловых машин. Рассмотрим два тепловых двигателя - это паровой и внутреннего сгорания. В основном используется два паровых двигателя: возвратного типа и паровая турбина. В двигателях возвратного типа (рис.4) нагретый пар проходит через впускной клапан и затем расширяется в пространстве под поршнем, вынуждая его тем самым двигаться.

Затем, когда поршень возвращается в исходное положение, он вытесняет пар через выпускной клапан. В паровых турбинах по существу происходит тоже самое. Различие состоит в том, что возвратно-поступательный поршень заменен турбиной (рис.5), напоминающей гребное колесо. Наиболее распространенным двигателем сейчас является четырёхтактный двигатель внутреннего сгорания (рис.6). На рисунке 6 буквами обозначены следующие процессы: а. Смесь воздуха с бензином всасывается в цилиндр, при движении поршня вниз. б. Поршень движется вверх и сжимает смесь. в. Искра от свечи воспламеняет смесь. При этом температура смеси резко возрастает. г. Газы, находящиеся при высоких температуре и давлении, расширяются, перемещая при этом поршень вниз (рабочий ход двигателя). д. Отработавшие газы выбрасываются через выпускной клапан; затем весь цикл повторяется.

Вещество, которое нагревают и охлаждают (в паровых машинах - пар), называют рабочим телом.

Для практической работы любого теплового двигателя необходима разность температур. Почему? Что бы ответить на этот вопрос представим себе паровую машину (как на рис.4), но без конденсатора и насоса. В таком случае пар имел бы одинаковую температуру во всей системе. Это означало бы, что давление пара при его выпуске было бы таким же, как и при впуске. Тогда работа, которую совершил пар над поршнем при своем расширении, в точности была бы равна работе, которую совершил поршень над паром при его выпуске, то есть не было бы совершено никакой результирующей работы.

В реальном двигателе выпускаемый газ охлаждается до более низкой температуры и конденсируется, так что давление при выпуске меньше, чем при впуске. В таком случае работа, которую должен совершить поршень для выталкивания газа из цилиндра, будет меньше, чем работа совершаемая газом работа над цилиндром. Таким образом может быт получена результирующая работа. Аналогично и с паровой турбиной: если бы не было разности давлений по обе стороны лопаток, то турбина не стала бы вращаться.

В паровых двигателях разность температур достигается за счет сжигания топлива, при этом нагревается пар. В двигателе внутреннего сгорания за счет сгорания рабочей смеси внутри цилиндра двигателя. Принцип действия холодильника или теплового насоса состоит в обращении рабочих стадий теплового двигателя. Работа обычно совершается мотором компрессора (рис.7). В обычном холодильнике цикл состоит из нескольких стадий: а. Пар сжимается компрессором, нагреваясь при этом. б. Нагретый пар поступает в конденсатор образуется горячая жидкость. в. Через расширительный клапан горячая жидкость поступает в теплообменник, где испаряясь охлаждается. г. Затем пар снова поступает в компрессор и цикл повторяется. Двигатель Карно и его КПД. В начале ХIХ века процесс преобразования теплоты в механическую работу подробно изучал французский ученый Н.Л. Сади Карно (1796-1832). Он намеревался определить способы повышения КПД тепловых машин, однако исследования привели к изучению основ термодинамики.

Как вспомогательное средство для своих исследований он на бумаге изобрел идеализированный тип двигателя, который теперь принято называть двигателем Карно. В этом двигателе происходят обратимые процессы, т.е. протекающие чрезвычайно медленно, так что его можно рассматривать, как последовательный переход от одного равновесного состояния к другому, причем этот процесс можно провести в обратном направлении без изменения совершенной работы и переданного количества теплоты.

Например газ находящийся в цилиндре с плотно прижатым к стенке поршнем, который не имеет трения, можно сжать изотермически, если сжатие производить очень медленно. Однако если в процессе участвуют какие-либо еще факторы, например трение, то работа совершенная в обратном направлении не будет равна совершенной при сжатии.

Вполне естественно, что обратимые процессы невозможны, поскольку на их совершение потребуется бесконечно много времени.

Но тем не менее такие процессы можно моделировать со сколь угодной точностью. Все реальные процессы необратимы, так как могут присутствовать: трение, в газах - возмущения и многие другие факторы. Двигатель Карно основан на обратимом цикле, т.е. на последовательности обратимых процессов. В двигателе Карно используется одноименный цикл (рис.8). В точке а начальное состояние системы. Сначала газ расширяется изотермически и обратимо по пути ab при заданной температуре TH, например газ приходит в контакт с термостатом, имеющим очень большую теплоемкость.

Затем газ расширяется адиабатически и обратимо по пути bc, при этом передача теплоты практически не происходит и температура газа падает до более низкого значения TL. На третьей стадии цикла происходит изотермическое и обратимое сжатие газа по пути cd, здесь газ контактирует с холодным термостатом при температуре ТL. И наконец газ адиабатически и обратимо сжимается по пути da возвращаясь, таким образом, в исходное состояние.

Несложно показать, что результирующая работа численно равна площади ограниченной кривыми. КПД двигателя Карно определяется также как и любого другого двигателя: Однако можно показать, что его КПД зависит лишь от ТН и ТL. В первом изотермическом процессе ab совершаемая газом работа равна: Wab=nRTHln(Vb/Va) , где n - число молей идеального газа, используемого в качестве рабочего тела. Поскольку внутренняя энергия идеального газа не меняется, когда температура постоянна, сообщаемая газу теплота полностью переходит в работу (в соответствии с первым началом термодинамики): (QH(=nRTHln(Vb/Va) Аналогично запишется теплота отдаваемая газом в процессе cd: (QL(=nRTLln(VC/Vd) Поскольку bc и da адиабатические процессы, получаем: PbVb=PcVc и PdVd=PaVa В соответствии с уравнением состояния идеального газа получаем: С помощью несложных математических преобразований этих выражений получаем математическое выражение отображающее суть цикла Карно: |(QL(/(QH(=TL/TH |(7) | Таким образом КПД двигателя Карно можно записать в виде: |(=1-(QL(/(QH(=1- TL/TH |(8) | Карно сформулировал следующую теорему (являющуюся ещё одной формулировкой второго начала термодинамики): Все обратимые двигатели, работающие между двумя термостатами, имеют один и тот же КПД; ни один необратимый двигатель, работающий междц теми же термостатами, не может иметь более высокого КПД. Эта теорема определяет максиммально возможный КПД для любого необратимого (реального) двигателя.

Рассмотрим идеальный цикл используемый в двигателях внутреннего сгорания, так называемый цикл Отто (рис. 9). В этом цикле сжатие и расширение смеси происходит адиабатически, а нагревание и охлаждение осуществляется при постоянном объеме.

На рисунке 9 дана диаграмма идеального цикла быстрого сгорания: 1-2 – адиабата сжатия, 2- 3 -нагревание смеси при V=const (сгорание смеси), 3-4 адиабата расширения, 4-1 – охлаждение смеси при V=const (выхлоп). КПД идеального двигателя построенного на основе цикла Отто рассчитывается аналогично.

Однако, в реальных двигателях КПД всегда несколько ниже, чем КПД идеального двигателя. Этому способствуют 5 основных причин: 1. В действительном цикле рабочее тело из меняет свой химический состав в течение процесса сгорания. 2. Процессы сжатия и расширения не идут адиабатически, а протекают, сопровождаясь теплообменом со стенками цилиндра.

Явление теплообмена со стенками цилиндра имеет место также и в процессе сгорания. 3. Процесс сгорания не происходит при постоянном объеме, а начинается в точке 2’ (рис. 10) и кончается после точки 3. В процессе сгорания тепло получается не извне, а за счет изменения химического состава рабочего тела. Химическая реакция сгорания не успевает закончиться полностью на линии сгорания (2-3), а продолжается в течение процесса расширения вплоть до момента выхлопа. 4. Процесс охлаждения рабочего тела в действительности заменяется выхлопом и выталкиванием отработанных газов и последующим засасыванием рабочей смеси (линия 4’-4-5-1). 5. Процесс всасывания заканчивается позднее точки 1 (в точке 1’) так, что от точки 4’ до 1’ в цилиндре находится не постоянное количество рабочего тела.

Конец работы -

Эта тема принадлежит разделу:

Газы и тепловые машины

Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем.. Это означает, что при изменении одной из величин, другая также изменится.. Хорошо известным примером действия этого закона является баллончик аэрозоля, который взрывается в костре.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Тепловой машиной называется такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют двигатели внутреннего сгорания, дизельные и т.д.

Любая тепловая машина состоит из трех частей: теплоотдатчика, рабочего тела и теплоприемника. Теплоотдатчик имеет температуру Т 1 и отдает некоторое количество теплоты Q 1 рабочему телу. Рабочее тело (газ, пар, нагретая жидкость) совершает работу. Причем, не вся теплота Q 1 превращается в работу, а только некоторая ее часть

А = Q 1 – Q 2 (4.8)

Другая часть теплоты Q 2 передается телу с более низкой температурой (Т 2) – теплоприемнику. Таким образом, сущность работы тепловой машины заключается не только в получении теплоты Q 1 от теплоотдатчика и совершении работы А, но и передаче некоторого количества теплоты Q 2 теплоприемнику, температура которого ниже чем температура теплоотдатчика (Т 1 > Т 2). Вечный двигатель второго рода состоит из первых двух частей, то есть, теплота Q 1 полностью переходит в работу А, а это невозможно. Там, где нет перепада температур (Т 1 = Т 2), невозможно превратить теплоту в работу.

Чтобы получить математическое выражение второго начала термодинамики, рассматривают действие идеальной тепловой машины. Идеальной называют машину , которая работает без трения и потерь тепла. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно.

Цикл Карно состоит из четырех последовательно совершаемых процессов: изотермического расширения, адиабатического расширения, изотермического сжатия, адиабатического сжатия газа. Все процессы проводят обратимо, в результате чего газ возвращается в исходное положение.

В результате математических преобразований получают

(Q 1 – Q 2)/Q 1 = (Т 1 – Т 2)/Т 1 (4.9)

или h = А/Q 1 ; h = (Т 1 – Т 2)/Т 1 (4.10)

где h – коэффициент полезного действия (КПД) тепловой машины.

Коэффициентом полезного действия тепловой машины h называется отношение количества полученной работы А к количеству поглощенной теплоты Q 1 . На основании этого соотношения второму закону термодинамики можно дать следующую формулировку: коэффициент полезного действия тепловой машины не зависит от природы и вида тел, участвующих в процессе, а зависит только от разности температур теплообменника (Т 1) и теплоприемника (Т 2). Современные тепловые машины имеют КПД, не превышающие 33 - 35 %.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Воронеж 2011
Лекция № 1 (2ч) Введение Вопросы: 1. Предмет химии. Значение химии в изучении природы и развитии техники. 2. Осно

Основные количественные законы химии
К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIII – начале XIX веков, и

Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в

Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель. В одной и той же оболочке энергия подуровней возрастает в ряду E

Строение многоэлектронных атомов
Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись

Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,

Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений

Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят

Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи. Ковалентной связью называют химическую связь, образованную

Типы межмолекулярных взаимодействий
Связи, при образовании которых перестройка электронных оболочек не происходит, называются взаимодействием между молекулами. К основным видам взаимодействия молекул следует о

Пространственная структура молекул
Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод

Общая характеристика агрегатного состояния вещества
Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества. Аг

Газообразное состояние вещества. Законы идеальных газов. Реальные газы
Газы распространены в природе и находят широкое применение в технике. Их используют в качестве топлива, теплоносителей, сырья для химической промышленности, рабочего тела для выполнения механическо

Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн

Характеристики некоторых веществ
Вещество Вид кристалла Энергия кристаллической решетки, кДж/моль Темпер

Общие понятия термодинамики
Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин

Термохимия. Тепловые эффекты химических реакций
Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут

Закон Гесса и следствия из него
На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа

Свободная и связанная энергии. Энтропия системы
Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы

Влияние температуры на направление химических реакций
DH DS DG Направление реакции DH < 0 DS > 0 DG < 0

Понятие о химической кинетике
Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,

Факторы, влияющие на скорость химических реакций. Закон действующих масс
На скорость химических реакций оказывают влияние следующие факторы: природа и концентрации реагирующих веществ; температура, природа растворителя, присутствие катализатора и т.д.

Теория активизации молекул. Уравнение Аррениуса
Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол

Особенности каталитических реакций. Теории катализа
Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак

Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа

Константа химического равновесия
Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком: аA + вB D сC + dD, где

Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния

Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф если Ф = 1, то С = 2 (система бивариантна) Ф = 2, то С = 1 (система одновариантна) Ф = 3, то С = 0 (система безвариантна) Ф = 4, то С = -1 (

Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
Под термином «химическое сродство» понимают способность веществ вступать в химическое взаимодействие друг с другом. У различных веществ оно зависит от природы реагирующих ве

Сольватная (гидратная) теория растворения
Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст

Общие свойства растворов
В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе

Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич

Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з

Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр

При соблюдении этих условий коллоидные частицы приобретают электрический заряд и гидратную оболочку, что препятствует выпадению их в осадок
К дисперсионным методам получения коллоидных систем относятся: механические – дробление, растирание, размол и т. д.; электрический – получение золей металлов под действ

Устойчивость коллоидных растворов. Коагуляция. Пептизация
Под устойчивостью коллоидного раствора понимают постоянство основных свойств этого раствора: сохранение размеров частиц (агрегативная устойчивость

Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические. Рассмотрим молекулярно-кинетические

Особенности обменных процессов
Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны п

Особенности окислительно-восстановительных процессов
При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в

Общие понятия электрохимии. Проводники первого и второго рода
Электрохимия – это раздел химии, занимающийся изучением закономерностей взаимных превращений электрической и химической энергии. Электрохимические процессы можно разде

Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую. Гальваническим элементомназывают электрохим

Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен

Электродвижущая сила гальванического элемента
Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.

Поляризация и перенапряжение
При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода

Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты. При элект

Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист

Методы получения полимеров
Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ

Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.

Свойства полимеров
Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в

Применение полимеров
На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты). Волокна получают путем продавливания растворов или

Некоторые реагенты для идентификации катионов
Реагент Формула Катион Продукт реакции Ализарин C14H6O

Инструментальные методы анализа
В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определен

На производстве привело к появлению тепловых машин.

Устройство тепловых машин

Тепловая машина (тепловой двигатель) - устройство для преобразования внутренней энергии в механическую.

Любая тепловая машина имеет нагреватель, рабочее тело (газ или пар), которое в результате нагрева выполняет работу (приводит во вращение вал турбины, двигает поршень и так далее) и холодильник. На рисунке ниже изображена схема теплового двигателя.

Основы действия тепловых двигателей

Каждая тепловая машина функционирует благодаря двигателю. Для выполнения работы ему нужно, чтобы по ту и другую сторону поршня двигателя или лопастей турбины была разность давлений. Достигается эта разность во всех тепловых двигателях так: температура рабочего тела повышается на сотни или тысячи градусов в сравнении с температурой окружающей среды. В и в двигателях внутреннего сгорания (ДВС) происходит повышение температуры за счет того, что топливо сгорает внутри самого двигателя. Холодильником может выступать атмосфера или специального назначения устройства для конденсации и охлаждения отработанного пара.

Цикл Карно

Цикл (круговой процесс) - совокупность изменений состояния газа, в результате которых он возвращается в исходное состояние (может выполнять работу). В 1824 году французский физик Сади Карно показал, что выгодным является цикл тепловой машины (цикл Карно), который состоит из двух процессов - изотермического и адиабатного. На рисунке ниже изображен график цикла Карно: 1-2 и 3-4 - изотермы, 2-3 и 4-1 - адиабаты.

В соответствии с законом сохранения энергии работа тепловых машин, которую выполняет двигатель, равна:

А = Q 1 - Q 2 ,

где Q 1 - количество теплоты, которое получено от нагревателя, а Q 2 - количество теплоты, которое предано холодильнику.
КПД тепловой машины называется отношение работы А, которую выполняет двигатель, к количеству теплоты, которое получено от нагревателя:

η = А/Q =(Q 1 - Q 2)/Q 1 = 1 - Q 2 /Q 1 .

В работе «Мысли о движущей силе огня и о машинах, которые способны развивать эту силу» (1824) Карно описал тепловую машину под названием "идеальная тепловая машина с идеальным газом, который представляет собой рабочее тело". Благодаря законам термодинамики можно вычислить КПД (максимально возможный) теплового двигателя с нагревателем, который имеет температуру Т 1 , и холодильником с температурой Т 2 . Тепловая машина Карно имеет КПД:

η max = (T 1 - T 2)/T 1 = 1 - T 2 /T 1.

Сади Карно доказал, что какая угодно тепловая машина реальная, которая работает с нагревателем с температурой Т 1 и холодильником с температурой Т 2 не способна иметь КПД, который бы превышал КПД тепловой машины (идеальной).

Двигатель внутреннего сгорания (ДВС)

Четырехтактный ДВС состоит из одного или нескольких цилиндров, поршня, кривошипно-шатунного механизма, впускного и выпускного клапанов, свечи.


Рабочий цикл состоит из четырех тактов:

1) засасывания - горючая смесь попадает через клапан в цилиндр;
2) сжатия - оба клапана закрыты;
3) рабочий ход - взрывное сгорание горючей смеси;
4) выхлоп - выпуск отработанных газов в атмосферу.

Паровая турбина

В паровой турбине преобразование энергии происходит за счет разницы давлений водяного пара на входе и выходе.
Мощности современных паровых турбин достигают 1300 МВт.

Некоторые технические параметры паровой турбины мощностью 1200 МВт

  • Давление пара (свежего) - 23,5 МПа.
  • Температура пара - 540 °С.
  • Расход пара турбиной - 3600 т/ч.
  • Частота вращения ротора - 3000 об/мин.
  • Давление пара в конденсаторе - 3,6 кПа.
  • Длина турбины - 47,9 м.
  • Масса турбины - 1900 т.

Тепловая машина состоит из воздушного компрессора, камеры сгорания и Принцип работы: воздух адиабатно засасывается в компрессор, поэтому его температура повышается до 200 °С и более. Далее попадает в камеру сгорания, куда одновременно под большим давлением поступает жидкое топливо - керосин, фотоген, мазут. При сгорании топлива воздух нагревается до температуры 1500-2000 °С, расширяется, и скорость его движения растет. Воздух движется с большой скоростью, и продукты сгорания направляются в турбину. После перехода от ступени к ступени продукты сгорания отдают лопастям турбины свою кинетическую энергию. Часть энергии, полученной турбиной, идет на вращение компрессора; оставшаяся часть расходуется на вращение ротора электрогенератора, винта самолета или морского судна, колес автомобиля.

Газовую турбину можно использовать, кроме вращения колес автомобиля и или теплохода, в качестве реактивного двигателя. Воздух и продукты сгорания с большой скоростью выбрасываются из газовой турбины, поэтому реактивная тяга, которая возникает при этом процессе, может использоваться для хода воздушных (самолет) и водных (теплоход) судов, железнодорожного транспорта. Например, турбовинтовые двигатели имеют самолеты Ан-24, Ан-124 («Руслан»), Ан-225 («Мечта»). Так, «Мечта» при скорости полета 700-850 км/ч способна перевозить 250 тонн груза на расстояние почти 15 000 км. Это крупнейший транспортный самолет в мире.

Экологические проблемы тепловых машин

Большое влияние на климат имеет состояние атмосферы, в частности наличие углекислого газа и водяного пара. Так, изменение содержания углекислого газа приводит к усилению или ослаблению парникового эффекта, при котором углекислый газ частично поглощает тепло, которое Земля излучает в космос, задерживает его в атмосфере и повышает тем самым температуру поверхности и нижних слоев атмосферы. Явление парникового эффекта играет решающую роль в смягчении климата. При его отсутствии средняя температура планеты была бы не +15 °С, а ниже на 30-40 °С.

Сейчас в мире существует более 300 млн различного вида автомобилей, которые создают более половины всех загрязнений атмосферы.

За 1 год в атмосферу из тепловых электростанций в результате сжигания топлива выделяется 150 млн тонн оксидов серы, 50 млн тонн оксида азота, 50 млн тонн золы, 200 млн тонн оксида углерода, 3 млн тонн феона.

В состав атмосферы входит озон, который защищает все живое на земле от губительного воздействия ультрафиолетовых лучей. В 1982 году Дж. Фарманом, английским исследователем, над Антарктидой была открыта озоновая дыра - временное снижение содержания озона в атмосфере. В момент максимального развития озоновой дыры 7 октября 1987 количество озона в ней уменьшилось в 2 раза. Озоновая дыра, вероятно, возникла в результате антропогенных факторов, в том числе использования в промышленности хлорсодержащих хладонов (фреонов), которые разрушают озоновый слой. Однако исследования 1990 гг. не подтвердили эту точку зрения. Скорее всего, появление озоновой дыры не связано с деятельностью человека и является естественным процессом. В 1992 году и над Арктикой была открыта озоновая дыра.

Если весь атмосферный озон собрать в слой у поверхности Земли и сгустить его к плотности воздуха при нормальном атмосферном давлении и температуре 0 °С, то толщина озонового щита будет всего лишь 2-3 мм! Вот и весь щит.

Немного из истории...

  • Июль 1769 года. В парижском парке Медоне военный инженер Н. Ж. Кюньйо на «огненной телеге», которая была оснащена двухцилиндровым паровым двигателем, проехал несколько десятков метров.
  • 1885 год. немецкий инженер, построил первый бензиновый четырехтактный трехколесный автомобиль Motorwagen мощностью 0,66 кВт, на который 29 января 1886 года получил патент. Скорость машины достигала 15-18 км/ч.
  • 1891 год. немецкий изобретатель, изготовил грузовую тележку с двигателем мощностью 2,9 кВт (4 лошадиные силы) от легкового автомобиля. автомобиля достигала 10 км/ч, грузоподъемность в различных моделях составляла от 2 до 5 тонн.
  • 1899 год. Бельгиец К. Женатци на своем автомобиле «Жаме Контант» («Всегда недовольная») впервые преодолел 100-километровый рубеж скорости.

Примеры решения задач

Задача 1. Температуру нагревателя идеальная тепловая машина имеет равную 2000 К, а температуру холодильника - 100 °С. Определить КПД.

Решение :
Формула, которая определяет КПД тепловой машины (максимальный):

ŋ = Т 1 -Т 2 /Т 1.
ŋ = (2000К - 373К) / 2000 К = 0,81.

Ответ: КПД двигателя - 81 %.

Задача 2. В тепловом двигателе при сгорании топлива было получено 200 кДж теплоты, а холодильнику передано 120 кДж теплоты. Каков КПД двигателя?

Решение:
Формула для определения КПД имеет такой вид:

ŋ = Q1 - Q2 / Q1.
ŋ = (2·10 5 Дж - 1,2·10 5 Дж) / 2·10 5 Дж = 0,4.

Ответ: КПД теплового двигателя - 40 %.

Задача 3. Каков КПД тепловой машины, если рабочее тело после получения от нагревателя количества теплоты 1,6 МДж выполнило работу 400 кДж? Какое количество теплоты было передано холодильнику?

Решение:
КПД можно определить по формуле

ŋ = 0,4·10 6 Дж / 1,6·10 6 Дж = 0,25.

Переданное холодильнику количество теплоты можно определить по формуле

Q 1 - А = Q 2.
Q 2 = 1,6·10 6 Дж - 0,4·10 6 Дж = 1,2·10 6 Дж.
Ответ: тепловая машина имеет КПД 25 %; переданное холодильнику количество теплоты - 1,2·10 6 Дж.