Какую работу произвел реактивный двигатель. Реактивный двигатель: современные варианты исполнения

Реактивными двигателями называют такие устройства, которые создают нужную для процесса движения силу тяги преобразованием внутренней энергии горючего в кинетическую энергию реактивных струй в рабочем теле. Рабочее тело стремительно проистекает из двигателя, и по закону сохранения импульса формируется реактивная сила, которая толкает двигатель в противолежащем направлении. Чтобы разогнать рабочее тело может применяться как расширение газов, нагретых самыми разнообразными способами до высоких температур, а также и другими физическими процессами, в частности, ускорением заряженных частиц в электростатическом поле.

Реактивные двигатели сочетают в себе собственно двигатели с движителями. Имеется в виду, что они создают тяговые усилия исключительно взаимодействием с рабочими телами, без опор, либо контактами с остальными телами. То есть обеспечивают сами себе собственное продвижение, при этом промежуточные механизмы не принимают никакого участия. Вследствие этого в основном они используются для того, чтобы приводить в движение воздушные судна, ракеты и, конечно же, космические аппараты.

Что такое тяга двигателя?

Тягой двигателей называют реактивную силу, которая проявляется газодинамическими силами, давлением и трением, приложенными к внутренним и внешним сторонам двигателя.

Тяги различаются на:

  • Внутренние (реактивные тяги), когда не учитывается внешнее сопротивление;
  • Эффективные, учитывающие внешнее сопротивление силовых установок.

Отправная энергия запасается на борту летательных или других аппаратов, оснащенных реактивными двигателями (химическим горючим, ядерным топливом), или может притекать снаружи (например, солнечная энергия).

Как формируется реактивная тяга?

Для формирования реактивной тяги (тяги двигателя), которая используется реактивными двигателями, потребуются:

  • Источники исходной энергии, которые превращаются в кинетическую энергию реактивных струй;
  • Рабочие тела, которые в качестве реактивных струй будут выбрасываться из реактивных двигателей;
  • Сам реактивный двигатель в качестве преобразователя энергии.

Как получить рабочее тело?

Для приобретения рабочего тела в реактивных двигателях могут использоваться:

  • Вещества, отбираемые из окружающей среды (к примеру, вода, либо воздух);
  • Вещества, находящиеся в баках аппаратов или в камерах реактивных двигателей;
  • Смешанные вещества, поступающие из окружающей среды и запасаемые на бортах аппаратов.

Современные реактивные двигатели главным образом используют химическую энергию. Рабочие тела представляют собой смесь раскаленных газов, которые являются продуктами сгорания химического горючего. Когда работает реактивный двигатель, химическая энергия от сгорающих веществ преобразуется в тепловую энергию от продуктов сгорания. В то же время тепловая энергия от горячих газов превращается в механическую энергию от поступательных движений реактивных струй и аппаратов, на которых установлены двигатели.

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Лопатки турбин компрессоров производят сжатие воздуха приблизительно от 30 и более раз, совершают «проталкивания» его (нагнетание) в камеру сгорания (происходит генерирование рабочего тела). Вообще камеры сгорания выполняют к тому же и роли карбюраторов, производя смешивание топлива с воздухом.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Реактивные двигатели снабжены соплами, через которые из них вовне с огромной скоростью вытекают накаленные газы, которые являются продуктами сгорания топлива. В некоторых двигателях газы оказываются в соплах сразу же после камер сгорания. Это относится, например, к ракетным или прямоточным двигателям.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).

В противоположность воздушно-реактивным двигателям все компоненты рабочих тел РД находятся на борту аппаратов, оснащенных ракетными двигателями. Отсутствие движителей, взаимодействующих с окружающей средой, а также присутствие всех составляющих рабочих тел на борту аппаратов делают ракетные двигатели пригодными для функционирования в космическом пространстве. Имеется также комбинация ракетных двигателей, представляющих собой некое совмещение двух основных разновидностей.

Кратко об истории реактивного двигателя

Считается, что реактивный двигатель изобрели Ганс фон Охайн и выдающийся немецкий инженер-конструктор Фрэнк Виттл. Первый патент на действующий газотурбинный двигатель получил именно Фрэнк Виттл в 1930 году. Тем не менее, первая рабочая модель была собрана собственно Охайном. В конце лета 1939 года в небе появилось первое реактивное воздушное судно – He-178 (Хейнкель-178), который был снаряжен двигателем HeS 3, разработанным Охайном.

Как устроен реактивный двигатель?

Устройство реактивных двигателей довольно-таки простое и в то же время чрезвычайно сложное. Оно простое по принципу действия. Так, забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину. После чего он там начинает смешиваться с горючим и сгорать. На краю турбины образуется так называемое «рабочее тело» (ранее упоминаемая реактивная струя), которое продвигает летательный или космический аппарат.

При всей простоте, на самом деле это целая наука, ведь в середине таких двигателей рабочий температурный режим может достигать более тысячи градусов по Цельсию. Одной из важнейших проблем в турбореактивном двигателестроении является создание неплавящихся деталей из металлов, которые сами поддаются плавлению.

В начале, перед каждой турбиной всегда располагается вентилятор, засасывающий воздушные массы из окружающей среды в турбины. Вентиляторы обладают большой площадью, а также колоссальной численностью лопастей специальных конфигураций, материалом для которых послужил титан. Сразу за вентиляторами располагаются мощные компрессоры, которые необходимы для нагнетания воздуха под огромным давлением в камеры сгорания. После камер сгорания горящие топливовоздушные смеси направляются в саму турбину.

Турбины состоят из множества лопаток, на которые оказывают давление реактивные потоки, которые и приводят турбины во вращение. Далее турбины вращают валы, на которых «насажены» вентиляторы и компрессоры. Собственно так, система становится замкнутой и нуждается исключительно в подводе топлива и воздушных масс.

Вслед за турбинами потоки направляются в сопла. Сопла реактивных двигателей являются последними, но не самыми последними по своей значимости частями в реактивных двигателях. Они формируют непосредственные реактивные струи. В сопла направляются холодные воздушные массы, нагнетаемые вентиляторами для охлаждения «внутренностей» двигателей. Эти потоки ограничивают манжеты сопел от сверхгорячих реактивных потоков и не позволяют им расплавляться.

Отклоняемый вектор тяги

Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы — так регулируются и направляются непосредственно реактивные потоки. Благодаря этому воздушные судна с двигателями, имеющими отклоняемый вектор тяги, становятся чрезвычайно маневренными, потому что процессы маневрирования происходят не только вследствие действий механизмов крыльев, но также прямо самими двигателями.

Типы реактивных двигателей

Имеется несколько основных разновидностей реактивных двигателей. Так, классическим реактивным двигателем можно назвать авиадвигатель в самолете F-15. Большинство таких двигателей используются преимущественно на истребителях самых разнообразных модификаций.

Двухлопастные турбовинтовые двигатели

В этой разновидности турбовинтовых двигателей мощность турбин через понижающие редукторы направляется для вращения классических винтов. Наличие таких двигателей позволяет большим воздушным суднам осуществлять полеты с максимально приемлемыми скоростями и при этом расходовать меньшее количество авиатоплива. Нормальная крейсерская скорость у турбовинтовых воздушных суден может быть 600-800 км/ч.

Турбовентиляторные реактивные двигатели

Эта разновидность двигателей является более экономичной в семействе двигателей классических типов. Главной отличительной характеристикой в них является то, что на входе ставятся вентиляторы больших диаметров, которые подают воздушные потоки не только для турбин, но и создают довольно-таки мощные потоки вне их. Вследствие этого, можно достичь повышенной экономичности, путем усовершенствования КПД. Они используются на лайнерах и больших воздушных суднах.

Прямоточные воздушно-реактивные двигатели

Эта разновидность двигателей функционирует таким образом, что не нуждается в подвижных деталях. Воздушные массы нагнетаются в камеру сгорания непринужденным путем, благодаря торможению потоков об обтекатели входных отверстий. В дальнейшем совершается все то же, что и в обыкновенных реактивных двигателях, а именно воздушные потоки смешиваются с топливом и выходят как реактивные струи из сопел. Прямоточные воздушно-реактивные двигатели применяются в поездах, в воздушных суднах, в «беспилотниках», в ракетах, кроме того они могут устанавливаться на велосипеды или скутеры.

РЕАКТИ́ВНЫЙ ДВИ́ГАТЕЛЬ, двигатель, создающий необходимую для движения силу тяги путём преобразования потенциальной энергии в кинетическую энергию реактивной струи рабочего тела. Под рабочим тело м, применительно к двигателям, понимают вещество (газ, жидкость, твёрдое тело), с помощью которого тепловая энергия, выделяющаяся при сгорании топлива, преобразуется в полезную механическую работу. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, направленной в пространстве в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в реактивном двигателе могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная).

Реактивный двигатель (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем , т. е. обеспечивает собственное движение без участия промежуточных механизмов. Для создания реактивной тяги (тяги двигателя), используемой реактивным двигателем, необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из реактивного двигателя; сам реактивный двигатель – преобразователь энергии. Тяга двигателя – это реактивная сила, являющаяся результирующей газодинамических сил давления и трения, приложенных к внутренним и наружным поверхностям двигателя. Различают внутреннюю тягу (реактивную тягу) – результирующую всех газодинамических сил, приложенных к двигателю, без учёта внешнего сопротивления и эффективную тягу, учитывающую внешнее сопротивление силовой установки. Исходная энергия запасается на борту летательного или другого аппарата, оснащённого реактивным двигателем (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца).

Для получения рабочего тела в реактивном двигателе может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере реактивного двигателя; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В современных реактивных двигателях в качестве первичной энергии чаще всего используется химическая энергия. В этом случае рабочее тело представляет собой раскалённые газы – продукты сгорания химического топлива. При работе реактивного двигателя химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель.

Принцип работы реактивного двигателя

В реактивном двигателе (рис. 1) струя воздуха попадает в двигатель, встречается с вращающимися с огромной скоростью турбинами компрессора, который засасывает воздух из внешней среды (с помощью встроенного вентилятора). Таким образом, решаются две задачи – первичный забор воздуха и охлаждение всего двигателя в целом. Лопатки турбин компрессора сжимают воздух примерно в 30 раз и более и «проталкивают» его (нагнетают) в камеру сгорания (генерируется рабочее тело), которая является основной частью любого реактивного двигателя. Камера сгорания выполняет ещё и роль карбюратора , смешивая топливо с воздухом. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или какое-нибудь твёрдое топливо пороховых ракет. После образования топливно-воздушной смеси она поджигается и выделяется энергия в виде теплоты, т. е. топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много теплоты, а также образуют при этом большое количество газов.

В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объёмное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя одна из самых горячих его частей (температура в ней достигает 2700° С), её необходимо постоянно интенсивно охлаждать. Реактивный двигатель снабжён соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы – продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например в ракетных или прямоточных двигателях. В турбореактивных двигателях газы после камеры сгорания сначала проходят через турбину , которой отдают часть своей тепловой энергии для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя – через него текут газы, перед тем как покинуть двигатель. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый компрессором для охлаждения внутренних деталей двигателя. Реактивное сопло может иметь различные формы и конструкцию в зависимости от типа двигателя. Если скорость истечения должна превосходить скорость звука, то соплу придаётся форма расширяющейся трубы или же сначала суживающейся, а затем расширяющейся (сопло Лаваля). Только в трубе такой формы можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер».

В зависимости от того, используется или нет при работе реактивного двигателя окружающая среда, их подразделяют на два основных класса – воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД – тепловые двигатели , рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а бо́льшую часть рабочего тела черпает из окружающей среды. К ним относят турбореактивный двигатель (ТРД), прямоточный воздушно-реактивный двигатель (ПВРД), пульсирующий воздушно-реактивный двигатель (ПуВРД), гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД). В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащённого РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Основные характеристики реактивных двигателей

Основным техническим параметром, характеризующим реактивный двигатель, является тяга – усилие, которое развивает двигатель в направлении движения аппарата, удельный импульс – отношение тяги двигателя к массе ракетного топлива (рабочего тела), расходуемого в 1 с, или идентичная характеристика – удельный расход топлива (количество топлива, расходуемого за 1 с на 1 Н развиваемой реактивным двигателем тяги), удельная масса двигателя (масса реактивного двигателя в рабочем состоянии, приходящаяся на единицу развиваемой им тяги). Для многих типов реактивных двигателей важными характеристиками являются габариты и ресурс. Удельный импульс является показателем степени совершенства или качества двигателя. В приведённой диаграмме (рис. 2) в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей в зависимости от скорости полёта, выраженной в форме Маха числа , что позволяет видеть область применимости каждого типа двигателей. Этот показатель является также мерой экономичности двигателя.

Тяга – сила, с которой реактивный двигатель воздействует на аппарат, оснащённый этим двигателем, - определяется по формуле: $$P = mW_c + F_c (p_c – p_n),$$ где $m$ – массовый расход (расход массы) рабочего тела за 1 с; $W_c$ – скорость рабочего тела в сечении сопла; $F_c$ – площадь выходного сечения сопла; $p_c$ – давление газов в сечении сопла; $p_n$ – давление окружающей среды (обычно атмосферное давление). Как видно из формулы, тяга реактивного двигателя зависит от давления окружающей среды. Она больше всего в пустоте и меньше всего в наиболее плотных слоях атмосферы, т. е. изменяется в зависимости от высоты полёта аппарата, оснащённого реактивным двигателем, над уровнем моря, если рассматривается полёт в атмосфере Земли. Удельный импульс реактивного двигателя прямо пропорционален скорости истечения рабочего тела из сопла. Скорость же истечения увеличивается с ростом температуры истекающего рабочего тела и уменьшением молекулярной массы топлива (чем меньше молекулярная масса топлива, тем больше объём газов, образующихся при его сгорании, и, следовательно, скорость их истечения). Поскольку скорость истечения продуктов сгорания (рабочего тела) определяется физико-химическими свойствами компонентов топлива и конструктивными особенностями двигателя, являясь постоянной величиной при не очень больших изменениях режима работы реактивного двигателя, то величина реактивной силы определяется в основном массовым секундным расходом топлива и колеблется в очень широких пределах (минимум у электрических – максимум у жидкостных и твердотопливных ракетных двигателей). Реактивные двигатели малой тяги применяются главным образом в системах стабилизации и управления летательных аппаратов. В космосе, где силы тяготения ощущаются слабо и практически нет среды, сопротивление которой приходилось бы преодолевать, они могут использоваться и для разгона. РД с максимальной тягой необходимы для запуска ракет на большие дальность и высоту и особенно для вывода летательных аппаратов в космос, т. е. для разгона их до первой космической скорости. Такие двигатели потребляют очень большое количество топлива; они работают обычно очень короткое время, разгоняя ракеты до заданной скорости.

ВРД используют в качестве основного компонента рабочего тела окружающий воздух, значительно экономичнее. ВРД могут работать непрерывно в течение многих часов, что делает их удобными для использования в авиации. Разные схемы позволили их применять для ЛА эксплуатирующихся на разных режимах полёта. Широко применяются турбореактивные двигатели (ТРД), устанавливаемые почти на всех без исключения современных самолётах. Как и все двигатели, использующие атмосферный воздух, ТРД нуждаются в специальном устройстве для сжатия воздуха перед его подачей в камеру сгорания. В ТРД для сжатия воздуха служит компрессор, и конструкция двигателя во многом зависит от типа компрессора. Значительно проще по конструкции бескомпрессорные воздушно-реактивные двигатели, в которых необходимое повышение давления осуществляется другими способами; это пульсирующие и прямоточные двигатели. В пульсирующем воздушно-реактивном двигателе (ПуВРД) для этого служит обычно клапанная решётка, установленная на входе в двигатель, когда новая порция топливно-воздушной смеси заполняет камеру сгорания и в ней происходит вспышка, клапаны закрываются, изолируя камеру сгорания от входного отверстия двигателя. Вследствие этого давление в камере повышается, и газы устремляются через реактивное сопло наружу, после чего весь процесс повторяется. В бескомпрессорном двигателе другого типа, прямоточном воздушно-реактивном (ПВРД), нет даже и этой клапанной решётки и атмосферный воздух, попадая во входное устройство двигателя со скоростью, равной скорости полёта, сжимается за счёт скоростного напора и поступает в камеру сгорания. Впрыскиваемое топливо сгорает, повышается теплосодержание потока, который истекает через реактивное сопло со скоростью, большей скорости полёта. За счёт этого и создаётся реактивная тяга ПВРД. Основным недостатком ПВРД является неспособность самостоятельно обеспечить взлёт и разгон летательного аппарата (ЛА). Требуется сначала разогнать ЛА до скорости, при которой запускается ПВРД и обеспечивается его устойчивая работа. Особенность аэродинамической схемы сверхзвуковых летательных аппаратов с прямоточными воздушно-реактивными двигателями (ПВРД) обусловлена наличием специальных ускорительных двигателей, обеспечивающих скорость движения, необходимую для начала устойчивой работы ПРД. Это утяжеляет хвостовую часть конструкции и для обеспечения необходимой устойчивости требует установки стабилизаторов.

Историческая справка

Принцип реактивного движения известен давно. Родоначальником реактивного двигателя можно считать шар Герона . Твердотопливные ракетные двигатели (РДТТ – ракетный двигатель твёрдого топлива) – пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые. Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата. Её впервые сформулировал русский революционер-народоволец Н. И. Кибальчич, который в марте 1881, незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов. РДТТ применяют во всех классах ракет военного назначения (баллистических, зенитных, противотанковых и др.), в космической (например, в качестве стартовых и маршевых двигателей) и авиационной технике (ускорители взлёта самолётов, в системах катапультирования ) и др. Небольшие твердотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти реактивные двигатели пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических летательных аппаратов , ракетно-космической технике и т. д.

Большое значение для создания реактивных двигателей имели теоретические работы русских учёных С. С. Неждановского, И. В. Мещерского , Н. Е. Жуковского , труды французского учёного Р. Эно-Пельтри , немецкого учёного Г. Оберта . Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина «Теория воздушного реактивного двигателя», опубликованная в 1929. Практически на более 99% летательных аппаратов в той или иной степени применяют реактивный двигатель.

Вращающийся воздушный винт тянет самолет вперед. Но реактивный двигатель с большой скоростью выбрасывает горячие отработавшие газы назад и тем самым создает реактивную силу тяги, направленную вперед.

Типы реактивных двигателей

Существует четыре типа реактивных, или газотурбинных двигателей:

Турбореактивные ;

Турбовентиляторные - такие, как используемые на пассажирских лайнерах Боинг-747;

Турбовинтовые , где используют воздушные винты, приводимые в действие турбинами;

и Турбовальные , которые ставят на вертолеты.

Турбовентиляторный двигатель состоит из трех основных частей: компрессора, камеры сгорания и турбины, дающей энергию. Сначала воздух поступает в двигатель и сжимается при помощи вентилятора. Затем, в камере сгорания, сжатый воздух смешивается с горючим и сгорает, образуя газ при высокой температуре и высоком давлении. Этот газ проходит через турбину, заставляя ее вращаться с огромной скоростью, и выбрасывается назад, создавая таким образом реактивную силу тяги, направленную вперед.

Изображение кликабельно

Попав в турбинный двигатель, воздух проходит несколько ступеней сжатия. Особенно сильно вырастают давление и объем газа после прохождения камеры сгорания. Сила тяги, создаваемая выхлопными газами, позволяет реактивным самолетам двигаться на высотах и скоростях, намного превосходящих те, что доступны винтокрылым машинам с поршневыми двигателями.

В турбореактивном двигателе воздух забирается спереди, сжимается и сгорает вместе с топливом. Образующиеся в результате сгорания выхлопные газы создают реактивную силу тяги.

Турбовинтовые двигатели соединяют реактивную тягу выхлопных газов с передней тягой, создаваемой при вращении воздушного винта.

В передней части реактивного двигателя располагается вентилятор. Он забирает воздух из внешней среды, засасывая его в турбину. В двигателях, применяемых в ракетах, воздух заменяет жидкий кислород. Вентилятор снабжен множеством титановых лопастей, имеющих специальную форму.

Площадь вентилятора стараются сделать достаточно большой. Помимо забора воздуха эта часть системы участвует также и в охлаждении двигателя, предохраняя его камеры от разрушения. Позади вентилятора располагается компрессор. Он под большим давлением нагнетает воздух в камеру сгорания.

Один из главных конструктивных элементов реактивного двигателя – камера сгорания. В ней топливо смешивается с воздухом и поджигается. Происходит возгорание смеси, сопровождающееся сильным разогревом деталей корпуса. Топливная смесь под действием высокой температуры расширяется. Фактически в двигателе происходит управляемый взрыв.

Из камеры сгорания смесь топлива с воздухом поступает в турбину, которая состоит из множества лопаток. Реактивный поток с усилием давит на них и приводит турбину во вращение. Усилие передается на вал, компрессор и вентилятор. Образуется замкнутая система, для работы которой требуется лишь постоянный подвод топливной смеси.

Последняя по счету деталь реактивного двигателя – сопло. Сюда из турбины поступает разогретый поток, формируя реактивную струю. В эту часть двигателя также подается от вентилятора холодный воздух. Он служит для охлаждения всей конструкции. Воздушный поток защищает манжету сопла от вредного воздействия реактивной струи, не позволяя деталям расплавиться.

Как работает реактивный двигатель

Рабочим телом двигателя является реактивная . Она с очень большой скоростью истекает из сопла. При этом образуется реактивная сила, которая толкает все устройство в противоположном направлении. Тяговое усилие создается исключительно за счет действия струи, без какой-либо опоры на другие тела. Эта особенность работы реактивного двигателя позволяет использовать его в качестве силовой установки для ракет, самолетов и космических аппаратов.

Отчасти работа реактивного двигателя сравнима с действием струи воды, вытекающей из шланга. Под огромным давлением жидкость подается по рукаву к зауженному концу шланга. Скорость воды при выходе из брандспойта выше, чем внутри шланга. При этом образуется сила обратного давления, которая позволяет пожарному удерживать шланг лишь с большим трудом.

Производство реактивных двигателей представляет собой особую отрасль техники. Поскольку температура рабочего тела здесь достигает нескольких тысяч градусов, детали двигателя изготовляют из высокопрочных металлов и тех материалов, которые устойчивы к плавлению. Отдельные части реактивных двигателей выполняют, к примеру, из специальных керамических составов.

Под реактивным понимают движение, при котором от тела с определенной скоростью отделяется одна из его частей. Возникающая в результате такого процесса сила действует сама по себе. Другими словами, у нее отсутствует даже малейший контакт с внешними телами.

в природе

Во время летнего отдыха на юге практически каждый из нас, купаясь в море, встречался с медузами. Но мало кто задумывался о том, что эти животные перемещаются так же, как реактивный двигатель. Принцип работы в природе подобного агрегата можно наблюдать при перемещении некоторых видов морских планктонов и личинок стрекоз. Причем КПД этих беспозвоночных зачастую выше, чем у технических средств.

Кто еще может наглядно продемонстрировать, какой имеет реактивный двигатель принцип работы? Кальмар, осьминог и каракатица. Подобное движение совершают и многие другие морские моллюски. Возьмем, например, каракатицу. Она вбирает воду в свою жаберную полость и энергично выбрасывает ее через воронку, которую направляет назад или вбок. При этом моллюск способен совершать движения в нужную сторону.

Принцип работы реактивного двигателя можно наблюдать и при перемещении сальца. Это морское животное принимает воду в широкую полость. После этого мышцы его тела сокращаются, выталкивая жидкость через отверстие, находящееся сзади. Реакция получаемой при этом струи позволяет сальце совершать движение вперед.

Морские ракеты

Но самого большего совершенства в реактивной навигации достигли все-таки кальмары. Даже сама форма ракеты, кажется, скопирована именно с этого морского обитателя. При перемещении с низкой скоростью кальмар периодически изгибает свой ромбовидный плавник. А вот для быстрого броска ему приходится использовать собственный "реактивный двигатель". Принцип работы всех его мышц и тела при этом стоит рассмотреть подробнее.

У кальмаров есть своеобразная мантия. Это мышечная ткань, которая окружает его тело со всех сторон. Во время движения животное засасывает в эту мантию большой объем воды, резко выбрасывая струю через специальное узкое сопло. Такие действия позволяют кальмарам двигаться толчками назад со скоростью до семидесяти километров в час. животное собирает в пучок все свои десять щупалец, что придает телу обтекаемую форму. В сопле имеется специальный клапан. Животное поворачивает его при помощи сокращения мышц. Это позволяет морскому обитателю менять направление движения. Роль руля во время перемещений кальмара играют и его щупальца. Их он направляет влево или вправо, вниз или вверх, легко уклоняясь от столкновений с различными препятствиями.

Существует вид кальмаров (стенотевтис), которому принадлежит звание лучшего пилота среди моллюсков. Опишите принцип работы реактивного двигателя - и вы поймете, почему, преследуя рыб, это животное порой выскакивает из воды, попадая даже на палубы судов, идущих по океану. Как же это происходит? Кальмар-пилот, находясь в водной стихии, развивает максимальную для него реактивную тягу. Это и позволяет ему пролететь над волнами на расстояние до пятидесяти метров.

Если рассматривать реактивный двигатель, принцип работы какого животного можно упомянуть еще? Это, на первый взгляд, мешковатые осьминоги. Пловцы из них не такие быстрые, как кальмары, но в случае опасности их скорости могут позавидовать даже лучшие спринтеры. Биологи, изучавшие миграции осьминогов, установили, что перемещаются они наподобие того, какой имеет реактивный двигатель принцип работы.

Животное с каждой струей воды, выброшенной из воронки, делает рывок на два или даже на два с половиной метра. При этом плывет осьминог своеобразно - задом наперед.

Другие примеры реактивного движения

Существуют свои ракеты и в мире растений. Принцип реактивного двигателя можно наблюдать тогда, когда даже при очень легком прикосновении «бешеный огурец» с высокой скоростью отскакивает от плодоножки, одновременно отторгая клейкую жидкость с семенами. При этом сам плод отлетает на значительное расстояние (до 12 м) в противоположном направлении.

Принцип работы реактивного двигателя можно наблюдать также, находясь в лодке. Если из нее в воду в определенном направлении бросать тяжелые камни, то начнется движение в противоположную сторону. Такой же имеет и принцип работы. Только там вместо камней используются газы. Они создают реактивную силу, обеспечивающую движение и в воздухе, и в разряженном пространстве.

Фантастические путешествия

О полетах в космос человечество мечтало давно. Об этом свидетельствуют произведения писателей-фантастов, которые для достижения этой цели предлагали самые разнообразные средства. Например, герой рассказа французского писателя Эркюля Савиньена Сирано де Бержерака достиг Луны на железной повозке, над которой постоянно подбрасывался сильный магнит. До этой же планеты добрался и знаменитый Мюнхгаузен. Совершить путешествие ему помог гигантский стебель боба.

Реактивное движение использовалось в Китае еще в первом тысячелетии до нашей эры. Своеобразными ракетами для забавы при этом служили бамбуковые трубки, которые начинялись порохом. Кстати, проект первого на нашей планете автомобиля, созданный Ньютоном, был также с реактивным двигателем.

История создания РД

Только в 19-м в. мечта человечества о космосе стала приобретать конкретные черты. Ведь именно в этом столетии русским революционером Н. И. Кибальчичем был создан первый в мире проект с реактивным двигателем. Все бумаги были составлены народовольцем в тюрьме, куда он попал после покушения на Александра. Но, к сожалению, 03.04.1881 г. Кибальчич был казнен, и его идея не нашла практического воплощения.

В начале 20-го в. мысль об использовании ракет для полетов в космос выдвинул русский ученый К. Э. Циолковский. Впервые его работа, содержащая описание движения тела переменной массы в виде математического уравнения, была опубликована в 1903 г. В дальнейшем ученый разработал саму схему реактивного двигателя, приводящегося в движение при помощи жидкого топлива.

Также Циолковским была изобретена многоступенчатая ракета и высказана идея о создании на околоземной орбите настоящих космических городов. Циолковский убедительно доказал, что единственным средством для космических полетов является ракета. То есть аппарат, оборудованный реактивным двигателем, заправляемый горючим и окислителем. Только такая ракета способна преодолеть силу тяжести и совершать полеты за пределами атмосферы Земли.

Освоение космоса

Идею Циолковского реализовали советские ученые. Возглавляемые Сергеем Павловичем Королевым, они осуществили запуск первого искусственного спутника Земли. 4 октября 1957 г. этот аппарат доставила на орбиту ракета с реактивным двигателем. Работа РД была основана на преобразовании химической энергии, которая передается топливом газовой струе, превращаясь в энергию кинетическую. При этом ракета совершает движение в обратном направлении.

Реактивный двигатель, принцип работы которого используется уже много лет, находит свое применение не только в космонавтике, но и в авиации. Но более всего его используют для Ведь только РД способен перемещать аппарат в пространстве, в котором отсутствует любая среда.

Жидкостный реактивный двигатель

Тот, кто стрелял из огнестрельного оружия или просто наблюдал этот процесс со стороны, знает, что существует сила, которая непременно оттолкнет ствол назад. Причем при большем количестве заряда отдача непременно увеличивается. Так же работает и реактивный двигатель. Принцип работы его схож с тем, как происходит отталкивание ствола назад под действием струи раскаленных газов.

Что касается ракеты, то в ней процесс, во время которого происходит воспламенение смеси, является постепенным и непрерывным. Это самый простой, твердотопливный двигатель. Он хорошо знаком всем ракетомоделистам.

В жидкостном реактивном двигателе (ЖРД) для создания рабочего тела или толкающей струи применяется смесь, состоящая из топлива и окислителя. Последним, как правило, выступает азотная кислота или Топливом в ЖРД служит керосин.

Принцип работы реактивного двигателя, который был в первых образцах, сохранен и до настоящего времени. Только теперь в нем используется жидкий водород. При окислении этого вещества увеличивается по сравнению с первыми ЖРД сразу на 30%. Стоит сказать о том, что идея применения водорода была предложена самим Циолковским. Однако существующие на тот момент трудности работы с этим чрезвычайно взрывоопасным веществом были просто непреодолимы.

Каков принцип работы реактивного двигателя? Топливо и окислитель попадают в рабочую камеру из отдельных баков. Далее происходит превращение компонентов в смесь. Она сгорает, выделяя при этом колоссальное количество тепла под давлением в десятки атмосфер.

Компоненты в рабочую камеру реактивного двигателя попадают по-разному. Окислитель вводится сюда напрямую. А вот топливо проходит более длинный путь между стенками камеры и сопла. Здесь оно разогревается и, уже имея высокую температуру, вбрасывается в зону горения через многочисленные форсунки. Далее струя, сформированная соплом, вырывается наружу и обеспечивает летательному аппарату толкающий момент. Вот так можно рассказать, какой имеет реактивный двигатель принцип работы (кратко). В данном описании не упоминаются многие компоненты, без которых работа ЖРД была бы невозможной. Среди них компрессоры, необходимые для создания нужного для впрыска давления, клапана, питающие турбины и т. д.

Современное использование

Несмотря на то что работа реактивного двигателя требует большого количества топлива, ЖРД продолжают служить людям и сегодня. Их применяют в качестве основных маршевых двигателей в ракетоносителях, а также маневровых для различных космических аппаратов и орбитальных станций. В авиации же используются другие виды РД, которые имеют несколько иные рабочие характеристики и конструкцию.

Развитие авиации

С начала 20-го столетия, вплоть до того периода, когда разразилась Вторая мировая война, люди летали только на винтомоторных самолетах. Эти аппараты были оснащены двигателями внутреннего сгорания. Однако прогресс не стоял на месте. С его развитием появилась потребность в создании более мощных и быстрых самолетов. Однако здесь авиационные конструкторы столкнулись с, казалось бы, неразрешимой проблемой. Дело в том, что даже при незначительном увеличении значительно возрастала масса самолета. Однако выход из создавшего положения был найден англичанином Френком Уиллом. Он создал принципиально новый двигатель, названный реактивным. Это изобретение дало мощный толчок для развития авиации.

Принцип работы реактивного двигателя самолета схож с действиями пожарного брандспойта. Его шланг имеет зауженный конец. Вытекая через узкое отверстие, вода значительно увеличивает свою скорость. Создающаяся при этом сила обратного давления настолько сильна, что пожарный с трудом удерживает в руках шланг. Таким поведением воды можно объяснить и то, каков принцип работы реактивного двигателя самолета.

Прямоточные РД

Этот тип реактивного двигателя является самым простым. Представить его можно в виде трубы с открытыми концами, которая установлена на движущемся самолете. В передней части ее поперечное сечение расширяется. Благодаря такой конструкции входящий воздух снижает свою скорость, а его давление увеличивается. Самое широкое место такой трубы является камерой сгорания. Здесь происходит впрыскивание топлива и его дальнейшее сгорание. Такой процесс содействует нагреванию образовавшихся газов и их сильному расширению. При этом возникает тяга реактивного двигателя. Ее производят все те же газы, когда с силой вырываются наружу из узкого конца трубы. Именно эта тяга и заставляет самолет лететь.

Проблемы использования

Прямоточные реактивные двигатели имеют некоторые недостатки. Они способны работать только на том самолете, который находится в движении. Летательный аппарат, находящийся в состоянии покоя, прямоточные РД привести в действие не могут. Для того чтобы поднять в воздух такой самолет нужен любой другой стартовый двигатель.

Решение проблемы

Принцип работы реактивного двигателя самолета турбореактивного типа, который лишен недостатков прямоточного РД, позволил авиационным конструкторам создать самый совершенный летательный аппарат. Как действует это изобретение?

Основной элемент, находящийся в турбореактивном двигателе, - газовая турбина. С ее помощью приводится в действие воздушный компрессор, проходя через который, сжатый воздух направляется в специальную камеру. Полученные в результате сгорания топлива (обычно это керосин) продукты попадают на лопасти турбины, чем приводят ее в действие. Далее воздушно-газовый поток переходит в сопло, где разгоняется до больших скоростей и создает огромнейшую реактивную силу тяги.

Увеличение мощности

Реактивная сила тяги может значительно возрасти за короткий промежуток времени. Для этого используется дожигание. Оно представляет собой впрыскивание дополнительного количества топлива в поток газа, вырывающийся из турбины. Неиспользованный в турбине кислород способствует сгоранию керосина, что и увеличивает тягу двигателя. На больших скоростях прирост ее значения достигает 70%, а на малых - 25-30%.