Разоблачение вечного двигателя. В мфти создают «локальный» вечный двигатель второго рода

Скорость, с которой человечество превращает в тепловую все остальные формы энергии, начинает уже угрожать самому факту существования цивилизации. «Тепловая смерть» в обозримом будущем из-за всё нарастающего потребления энергии с последующим ее рассеянием в виде тепла уже кажется неизбежной при сохранении нынешних темпов экономического развития. Но если человечество попытается затормозить их, то пойдет поперек законов эволюции и все равно погибнет.

Есть ли выход? Вполне возможно, что он пока не просматривается просто из-за неправильного понимания одного физического принципа. Преобразование энергопотребления в круговорот энергии в принципе позволило бы наращивать его интенсивность, не нарушая равновесия со средой. Это доказывает опыт органического мира, который, на протяжении тысячелетий сохраняя массу биосферы более или менее постоянной, многократно увеличил за время своей эволюции ежегодное потребление вещества и энергии. Ныне пропускаемые им ежегодно через себя массы вещества сравнимы с массой земной коры, а по некоторым оценкам — превышают ее.

Вечный двигатель второго рода невозможен?

Поскольку почти вся потребленная нами энергия рано или поздно рассеивается в виде тепла, из-за чего нам угрожает «тепловая смерть», постольку круговорот энергии должен будет принять форму круговорота тепла. Другими словами, нам предстоит научиться собирать рассеянное тепло, чтобы вновь и вновь использовать его энергию.

Идеальной тепловой машиной принято считать ту, которую теоретически разработал в 1824 году французский физик Сади Карно (Nicolas Léonard Sadi Carnot , 1796-1832). Ее идеальность заключается в том, что коэффициент полезного действия (КПД) любой другой машины, использующей те же холодильник и нагреватель, будет меньше, чем у машины, придуманной им. А то, что КПД его машины отличен от единицы, следует из самого факта наличия у нее холодильника: получив определенную энергию от нагревателя (например, в виде тепла от сжигания топлива), рабочее телоидеальной машине это, разумеется, идеальный газ), выполняя полезную работу, совершенно бесполезно отдает часть своей энергии в виде тепла холодильнику.

Сегодня для собирания рассеянного тепла используются энергетические установки классического типа (с холодильником) — гео- и гидротермальные энергоустановки и тепловые насосы с КПД меньшими, чем КПД Карно.

Разумеется, использование рассеянного тепла возможно только потому, что среда нагрета неравномерно, то есть с перепадами температуры, которые и используются собирающими тепло тепловыми машинами. Коль скоро величина этих перепадов невелика, КПД классических тепловых машин зарезается до чрезмерно малых значений. Поэтому круговорот тепла в энергетике может стать реальным лишь при ее базировании на энергетических установках без холодильника, КПД которых не был бы ограничен КПД Карно.

Такие энергетические установки называют вечными двигателями второго рода. Принято считать, что они запрещены вторым началом термодинамики . Однако угроза «тепловой смерти» заставляет нас максимально благожелательно рассмотреть аргументы в их защиту.

Положение не безнадежно. Не может быть так, чтобы на протяжении миллионов и миллиардов лет законы эволюции подстегивали органический мир, а затем и человечество к развитию в определенном направлении (в сторону интенсификации потребления вещества и энергии), а потом это развитие вдруг наткнулось бы на закон физики, который, делая невозможным круговорот тепла, обрекал бы человечество на гибель. Законы эволюции и физики, думается, входят в единый и непротиворечивый свод законов природы. Если это и на самом деле так, то запрет на вечные двигатели второго рода должен оказаться несостоятельным.

Ошибки классиков

Если же смешать кислород с водородом при одинаковой температуре, рост энтропии будет не связан с передачей тепла. При смешении холодного водорода с горячим кислородом энтропия будет расти и благодаря выравниванию температуры, и благодаря простому смешиванию (диффузии). Проблема в том, что при определенных условиях рост полной энтропии может сопровождаться уменьшением одного из слагаемых — например, тепловой.

В общем случае действует закон возрастания полной энтропии и не действует «закон» возрастания тепловой энтропии. Поскольку таким образом тепловая энтропия может убывать, постольку превращение тепла в другие формы энергии может происходить с уменьшением тепловой энтропии, лишь бы росла полная. Это означает, что превращение тепла в другие формы энергии может быть полным, то есть происходить без тепловой компенсации.

Обязательность холодильника для любой тепловой машины сегодня объясняют необходимостью обеспечения возрастания тепловой энтропии. Отмена «закона» ее возрастания делает запрет на вечные двигатели второго рода несостоятельным, что открывает дорогу к созданию энергетики, построенной на круговороте тепла.

О проектах вечных двигателей второго рода

Сегодня существуют многие десятки таких проектов. Однако все они огульно и априорно объявляются противоречащими второму началу термодинамики и, соответственно, недостойными критического анализа. В результате их авторы вынуждены «вариться» в собственной среде, что, естественно, лишает их возможности стать объектом рациональной критики и снижает научный уровень их текстов, часто — до недопустимо низкого. Здесь очень сложно отделять плевелы от ржи. Я расскажу только об одном таком проекте, идея которого представляется мне вполне достойной обсуждения.

Поместим навстречу ветру в атмосфере сужающуюся трубу, воздух в которой будет ускоряться по «геометрическим» причинам, подобно воздуху в расщелине между скалами или в узком проходе между домами. Такой поток в приближении идеального газа описывается уравнением Бернулли, известным в двух основных формах. Согласно первой, ускорение газа вдоль линии тока сопровождается уменьшением его давления, согласно второй — падением температуры. Первый эффект обеспечивает подъемную силу крыла, второй, надо полагать, может быть положен в основание вечного двигателя второго рода.

В самом деле, охлаждение потока газа означает уменьшение количества содержащегося в нем тепла, ускорение — рост его кинетической энергии. Тепловая энергия напрямую превращается здесь в кинетическую, холодильник отсутствует. Охлаждение потока газа происходит с уменьшением его тепловой энтропии, которое компенсируется ростом нетепловой энтропии, связанным с уменьшением давления.

Сужающуюся трубу можно снабдить турбиной, превратив ее в энергетическую установку. На «ветроэнергетическую установку» такого рода получили патент российские изобретатели Михаил Андреевич Егоров, Игорь Сергеевич Орлов и Эммануил Авраамович Соболь. Их установка выглядит на чертежах как пузатая бомба, подвешенная вдоль воздушного потока и принимающая его внутрь себя кольцеобразным отверстием.

Читатель, располагающий необходимой экспериментальной базой (каковая отсутствует у автора), может сам поставить experimentum crucis, использовав, например, для сооружения сужающейся трубы пленку для теплиц, закрепленную на проволочном каркасе.

Установка Егорова-Орлова-Соболя, мне кажется, может быть приспособлена и к водной среде, где она может иметь бóльшую мощность, поскольку в единице объема земных водоемов содержится существенно больше тепла, чем в единице объема атмосферы.

Но дело совсем не в том, работает ли эта конкретная конструкция. В мои задачи не входит предъявление проектов вечных двигателей второго рода, которые можно было бы немедленно запускать в производство. Я лишь пытаюсь переломить устойчивое негативное отношение Большой Науки к самой идее таких двигателей.

Новости партнёров

Вечный двигатель уже многие века не дает покоя ученым и инженерам. Еще бы, идея создать устройство, которое будет постоянно работать, не тратя при этом энергии, кажется очень заманчивой. Реально ли его создать, рассказывают ученые.

Что такое вечный двигатель?


Вечный двигатель или Perpetuum Mobile - это устройство воображаемое. Некоторые считают, что теоретически можно создать машину, которая будет бесконечно совершать работу без затрат каких-либо энергетических ресурсов. В то же время, постепенно ученые разочаровывались в этой идее и признавали, что от попыток создать такое устройство лучше отказаться, потому что они бессмысленны. Невозможность создать вечный двигатель постулируется как первое начало термодинамики. Но до сих пор идея вечного двигателя вызывает повышенный интерес.

Идеальный вечный двигатель должен проработать до окончания Большой заморозки (Big Freeze). Сторонники этой теории считают, что до скончания времени Вселенная будет расширяться с очень плавным ускорением. Этот процесс и называется Большой заморозкой, и когда он завершится, наступит конец всего. Когда это произойдет, точно не установлено, но у нас есть еще приблизительно 100 триллионов лет. Так вот, вечный двигатель должен работать как минимум столько же, чтобы считаться настоящим вечным двигателем.

Какими бывают вечные двигатели?

Perpetuum Mobile делятся на двигатели первого рода и второго рода. Двигатели первого рода могли бы функционировать без топлива — и вообще без энергетических затрат, которые возникают, например, при трении деталей механизма друг о друга. Двигатели второго рода могли бы извлекать тепло из более холодных окружающих тел и использовать эту энергию в работе.

Есть много проектов в Интернете, которые утверждают, что работают над конструкцией вечного двигателя. Однако если изучить эти проекты внимательно, становится понятно, что они все очень далеки от идеи вечного двигателя. Но если кому-то удастся сделать такое устройство, последствия будут ошеломляющими. Считается, что мы получим вечный источник энергии - бесплатной энергии.

К сожалению, согласно фундаментальным законам физики нашей Вселенной, создание вечного двигателя невозможно.

Почему создание вечного двигателя невозможно?

Вероятно, есть много людей, которые скажут «никогда не говори «никогда», особенно, если речь идет о науке». В какой-то степени это справедливо. Но если окажется, что вечный двигатель создать возможно, это перевернет физику, которую мы знаем. Окажется, что мы во всем были неправы и ни одно из наших предыдущих наблюдений не имеет никакого смысла.

Первый закон термодинамики -- закон сохранения энергии. Согласно этому закону, энергия не может быть ни создана, ни уничтожена - она просто переходит из одной формы в другую. Для того, чтобы держать механизм в постоянном движении, приложенная энергия должна остаться в этом механизме без каких-либо потерь. Ровно поэтому создание вечного двигателя невозможно.

Для того, чтобы построить вечный двигатель первого рода, мы должны выполнить несколько условий:

  1. У машины не должно быть никаких «трущихся» частей, любые движущиеся части не должны касаться других частей, так как иначе между ними возникнет трение. Это трение в конечном счете приведет к тому, что машина начнет терять энергию. При соприкосновении частей возникает тепло, и именно это тепло и есть энергия, потерянная машиной. Вы скажете, что тогда нужно сделать устройство с гладкой поверхностью, чтобы не возникало трение. Но это невозможно, так как не бывает совершенно гладких объектов.
  2. Машина должна работать в вакууме, без воздуха. Это исходит из первого условия. Эксплуатация машины в любом месте заставит ее терять энергию из-за трения между движущимися частями и воздуха. Хотя потери энергии из-за трения воздуха очень малы, для вечного двигателя это серьезная проблема. Если есть хотя бы минимальные потери энергии, машина начнет останавливается и в конце концов остановится совсем из-за этих потерь, даже если это займет очень много времени.
  3. Машина не должна издавать никаких звуков. Звук также форма энергии, и если машина издает любой звук, это означает, что она также теряет энергию.

Двигатели второго рода, которые используют теплоту окружающих тел, не противоречат закону сохранения энергии. Однако эти хитрые конструкции бессильны против второго начала термодинамики: в замкнутой системе самопроизвольный переход теплоты от более холодных тел к горячим невозможен. Для этого необходим некий посредник. А для работы посредника необходима энергия из внешнего источника. Кроме того, в природе не существует по-настоящему обратимы

Но самое главное, создание вечного двигателя может оказаться бессмысленным. Люди рассчитывают, что если такое устройство будет сделано, мы получим бесплатный источник энергии. Но так ли это? На самом деле, мы получим ровно столько энергии, сколько направим в этот двигатель. Мы ведь помним, что согласно законам физики, которые пока не опровергнуты, энергия не может быть создана из ничего, она может быть только преобразована. Так что, выходит, вечный двигатель - это бесполезное устройство.

Бабочки, конечно, ничего не знают о змеях. Зато о них знают птицы, охотящиеся на бабочек. Птицы, плохо распознающие змей, чаще становятся...

  • Если octo на латыни «восемь», то почему октава содержит семь нот?

    Октавой называется интервал между двумя ближайшими одноименными звуками: до и до, ре и ре и т. д. С точки зрения физики «родство» этих...

  • Почему важных особ называют августейшими?

    В 27 году до н. э. римский император Октавиан получил титул Август, что на латыни означает «священный» (в честь этого же деятеля, кстати,...

  • Чем пишут в космосе

    Известная шутка гласит: «NASA потратило несколько миллионов долларов, чтобы разработать специальную ручку, способную писать в космосе....

  • Почему основа жизни - углерод?

    Известно порядка 10 миллионов органических (то есть основанных на углероде) и лишь около 100 тысяч неорганических молекул. Вдобавок...

  • Почему кварцевые лампы синие?

    В отличие от обычного стекла, кварцевое пропускает ультрафиолет. В кварцевых лампах источником ультрафиолета служит газовый разряд в парах ртути. Он...

  • Почему дождь иногда льет, а иногда моросит?

    При большом перепаде температур внутри облака возникают мощные восходящие потоки. Благодаря им капли могут долго держаться в воздухе и...

  • Как известно, тепловой двигатель, работающий по замкнутому циклу, преобразует энергию из тепловой в механическую форму. При этом на одних этапах цикла двигателя к рабочему телу подводится энергия в тепловой форме, а на других - отводится в тепловой форме. Разница между подведенной и отведенной энергией в тепловой форме представляет собой результирующую работу W^ цикла. Чем больше тепловой энергии отводится от рабочего тела в цикле, тем меньше результирующая работа Жрез при одном и том же количестве подведенной тепловой энергии. КПД цикла снижается. Поэтому на практике стремятся уменьшить отвод энергии от рабочего тела в ходе циклического процесса.

    Карно показал, что тепловой двигатель (машина) не может работать без подвода и отвода энергии в тепловой форме от рабочего тела. Тепловая машина работает между двумя источниками тепловой энергии - нагрева­телем и холодильником. Чтобы повысить эффективность такой тепловой машины, необходимо уменьшить отвод тепловой энергии в холодильник. Однако исключить вообще отвод тепловой энергии от рабочего тела в цикле теплового двигателя нельзя (на это указывает второй закон термодинами­ки).

    Бели исключить отвод энергии в тепловой форме в холодильник, то КПД такого двигателя станет равным 1. В этом случае вся подведенная тепловая энергия Q\ должна быть преобразована в механическую форму W ^ = Qi [ Q 2 = 0]. Следовательно, можно отказаться от холодильника. В этом случае двигатель должен работать только с одним источником тепловой энергии - нагревателем (термостатом). Условная схема такого воображаемого двигателя (тепловой машины) приведена на рис. 8.44.

    Так как температура термостата при отводе от него энергии в тепловой форме не изменяется, то тепловой двигатель (машина), представленный на рис. 8.44, можно назвать изотермическим . В этом двигателе тепловая энергия подводится к рабочему телу при постоянной температуре нагрева­теля (Ti = Idem ).

    Идея построения такого двигателя (рис. 8.44) является заманчивой, но не осуществимой. Второй закон термодинамики указывает, что невозможна работа тепловой машины при наличии только одного источника теплоты (нагревателя).

    Напомним, что «вечные» двигатели первого рода никогда не работали, так как противоречили первому закону термодинамики — всеобщему закону сохранения энергии. «Вечные» двигатели второго рода не противоречат первому закону термодинамики (они соответствуют его положениям). Сколько энергии подведено к термодинамической системе (в данном случае Qi), столько же и отведено от нее (W^ = Qi), учитывая эквивалентность теплоты и работы.

    Формально двигатель (рис. 8.44) не соответствует определению вечного двигателя. «Вечный» двигатель первого рода в идеале должен работать вечно (не останавливаясь), если исключить возможные его поломки. «Веч­ный» двигатель второго рода даже в идеале не может работать вечно. Его название обусловлено другим обстоятельством. Если в качестве на­гревателя использовать воду, сосредоточенную на Земле, то двигатель (рис. 8.44) мог бы работать миллионы лет. При этом температура воды на Земле понизилась бы всего на несколько градусов. За 1700 лет работы такого двигателя температура воды на планете понизилась бы всего на 0,01 К. Для нас такой двигатель казался бы вечно работающим двигателем. Именно поэтому немецкий ученый В. Оствальд (1853-1932 гг.) назвал такой двигатель «вечным», понимая при этом его невозможность.

    Несмотря на то, что изобретатели и ученые, работающие во многих областях науки и техники, знают ограничения, накладываемые вторым законом термодинамики, попытки создания вечного двигателя второго рода имеют место и сейчас. Поощряет их на такую деятельность тот факт, что если удастся обойти второй закон термодинамики, то это сразу решит проблему энергии на все века. И это тогда, когда мир стоит на грани истощения энергетических ресурсов.

    Идеи вечных двигателей второго рода, как правило, появляются в периоды великих научных открытий, когда сами эти открытия еще не полностью осознаны и понятны.

    Напрямую второй закон термодинамики обойти невозможно, а поэтому изобретатели стремятся создать такой двигатель на основе комбинации большого количества физических явлений. При такой комбинации различ­ных физических явлений, положенных в основу работы тепловой машины, можно и не заметить наличие всех процессов, оговоренных вторым законом термодинамики.

    Рассмотрим несколько примеров таких двигателей.

    На рис. 8.45 показа конструктивная схема «нуль-мотора» американского профессора Гэмджи. Замысел этого двигателя базируется на достижениях в области холодильной техники. Как известно, к концу XIX в. были в основном изучены свойства веществ в области низких и сверхнизких температур. Прототипом двигателя послужили аммиачная холодильная машина и установка для сжижения воздуха.

    В специальном котле (рис. 8.45) находится жидкий аммиак. Котел находится в контакте с окружающей средой, а поэтому аммиак нагревается до температуры Тг = 300К (27° С). При этой температуре аммиак кипит (переходит в пар). По мере кипения аммиака давление на его жидкую фазу возрастает. При давлении 1МПа (10 атмосфер) и температуре Т\ = 300 К
    кипение аммиака прекращается . Поэтому можно утверждать, что в котле будет находиться пар под давлением 1 МПа.

    Таким образом, окружающая среда (воздух) является в рассматривае­мом двигателе верхним источником энергии в тепловой форме (Нагревате­лем] >. Этот факт соответствует второму закону термодинамики.

    Из котла пар аммиака через впускной клапан направляется в рас­ширительную машину (детандер), где он расширяется. При расширении пара аммиака совершается работа над поршнем расширительной машины. Следовательно, энергия от пара передается поршню (окружающей среде), преобразуясь одновременно в механическую форму. В расширительной ма­шине происходит преобразование внутренней энергии рабочего тела (пара аммиака) в механическую энергию с одновременной отдачей ее поршню. Внутренняя энергия пара аммиака уменьшается, а поэтому уменьшается его внутренняя энергия. Внутренняя энергия пара зависит только от его температуры. Следовательно, в расширительной машине (детандере) температура пара аммиака уменьшается.

    __ J __

    \

    Бели пар аммиака расширится до давления 0,1 МПа (1 атмосфера), то его температура понизится до 250К, т. е., станет равной - 23°С. При такой температуре аммиачный пар частично конденсируется (сжижается) в расширительной машине. Жидкий аммиак вместе с паром через выпускной клапан с помощью насоса откачивается в котел. Для привода насоса используется часть механической энергии, полученной в расширительной машине (детандере) при расширении паров аммиака. С помощью насоса давление жидкого аммиака повышается до 1МПа (10 атмосфер). Это необходимо для того, чтобы закачать аммиак в котел [в котле давление равно 1 МПа (10 атмосфер)]. В котле аммиак снова испаряется, нагреваясь от окружающей среды. Цикл должен повторяться. Таким образом, по мнению проф. Гэмджи, должен работать предложенный двигатель.

    Как видим, двигатель Гэмджи должен работать по замкнутому циклу без отвода части подведенной тепловой энергии в окружающую среду. Здесь не следует путать факт охлаждения паров аммиака в детандере с отводом энергии в форме теплоты в окружающую среду. Приемник тепло­вой энергии в двигателе Гэмджи отсутствует. Двигатель должен работать, отдавая потребителю механическую энергию за вычетом небольшой ее части, затраченной на привод насоса.

    Анализ показывает, что работа двигателя не противоречит положениям первого закона термодинамики - сколько энергии подведено к двигателю (в данном случае в тепловой форме), столько же ее отведено (в механиче­ской форме).

    Проанализируем энтропийный процесс работы двигателя. На входе энтропия потока энергии равна: SBX = Q 0 . C / T 0 . C > 0.

    На выходе энтропия потока энергии равна:

    Действительно, на выходе получаем энергию в механической форме, являющейся высокоорганизованной.

    В соответствии с вторым законом термодинамики изменение энтропии рабочего тела в ходе осуществления циклического процесса равно нулю. В данном случае изменение энтропии аммиака не равно нулю

    Что противоречит второму закону термодинамики.

    В идеальном случае на привод насоса потребуется столько механиче­ской энергии, сколько ее получается в расширительной машине. В этом случае отводить энергию от машины в тепловой форме не представляется возможным. Фактически машина работает по нулевому циклу, в котором полезная работа равна нулю. Таким образом, функциональные возможно­сти «нуль-мотора» Гэмджи соответствуют его названию.

    Двигатель Гэмджи можно заставить работать, внеся в него конструк­тивные изменения в соответствии со вторым законом термодинамики. На рис. 8.46 показана конструктивная схема усовершенствованного двигателя. В конструкцию двигателя перед насосом введен конденсатор пара (теп-

    Лообменник), отбирающий энергию от паров аммиака при температуре, меньшей температуры окружающей среды (Т < Т0.с). Естественно, что температура теплообменника (приемника теплоты) должна поддерживать­ся искусственно ниже температуры окружающей среды. В этом случае двигатель Гэмджи будет работать. Затраты энергии на привод насоса будут значительно уменьшены. Но вторую часть получаемой в расширительной машине работы пришлось бы затратить на работу специальной холодиль­ной машины, поддерживающей температуру холодильника (теплообменни­ка) ниже температуры окружающей среды.

    Таким образом, введя специальный теплообменник, мы заставили ра­ботать двигатель Гэмджи. Но достигнутый результат снова оказывается Нулевым. Полезной работы двигатель не дает (он не может приводить в действие ни одного потребителя). Следовательно, двигатель, работающий с верхним источником теплоты при температуре окружающей среды, яв­ляется неработоспособным.

    На рис. 8.47 показана схема так называемой «машины атмосферного тепла», предложенная проф. Шелестом, пионером тепловозостроения в России. Эта машина состоит из двух контуров. Первый контур включает компрессор К и турбину Т, соединенные валом. Турбина Т приводит в дей­ствие компрессор К. При вращении колеса компрессора К им засасывается воздух при параметрах окружающей среды (давлении рох и температуре Т0 .с). При сжатии воздух нагревается 7\ > Т0.с. В теплообменнике горячий воздух нагревает рабочее тело второго контура. Воздух при этом охла­ждается до температуры окружающей среды Г0.с. После теплообменника охлажденный сжатый воздух поступает в турбину Т, где совершает работу. При совершении работы он расширяется до давления окружающей среды Ро. с- При этом в результате совершения работы в турбине температура воз­духа еще понижается. Из турбины воздух выбрасывается в окружающую среду.

    Явления, происходящие в первом контуре позволяют утверждать, что он работает как тепловой насос, перенося теплоту с нижнего уровня То с на верхний Ti > Тох.

    Второй контур представляет собой тепловую машину, работающую по теплосиловому циклу. Во втором контуре в качестве рабочего тела исполь­зуется некоторое вещество, которое испаряется при низкой температуре. Поступая в теплообменник, это рабочее тело быстро испаряется, поглощая тепловую энергию в количестве Q. После теплообменника рабочее тело поступает в главную турбину Т2, где совершает полезную работу. При этом рабочее тело охлаждается. После турбины Т2 рабочее тело поступает в конденсатор, в котором переводится в жидкое состояние.

    Турбина Т2 приводится в действие насос Я, который снова сжимает рабочее тело, подавая его в теплообменник и далее в турбину. Часть работы W, получаемой в главной турбине, используется для привода турбоком­прессора первого контура и электрического генератора Г. С генератором соединен обычный электродвигатель, который выполняет полезную рабо­ту W .

    Таким образом, «машина атмосферного тепла» представляет комбина­цию двух тепловых машин, работающих по взаимно противоположным циклам. Первая машина (контур) работает по обратному циклу (тепловой насос), а вторая машина (контур) -по прямому циклу. Вторая машина полностью соответствует требованиям второго закона термодинамики. В ней есть расширительная машина (турбина Т2), рабочее тело и два ис­точника теплоты с различными температурами (верхний — теплообменник, нижний - конденсатор). Первая машина не соответствует требованиям вто­рого закона термодинамики, так как работает только с одним источником теплоты - окружающей средой. Второго (нижнего) источника теплоты здесь и не может быть, так как его температуру пришлось бы искусственно поддерживать ниже температуры окружающей среды. Это требует затраты механической энергии.

    Следовательно, первая машина неработоспособна. Если первая машина не может работать, то и вторая также неработоспособна, так как исполь­зует энергию сжатого воздуха, поступающего в теплообменник из первой машины.

    Таким образом, внешне машина атмосферного тепла является заманчи­вой идеей, а, по сути, она представляет собой бесполезную конструкцию.

    Были предложены и другие конструкции «вечных» двигателей второго рода, которые «успешно» подтвердили свою неработоспособность. Вместе с тем, к анализу работы таких двигателей следует подходить очень тща­тельно. Как правило, их конструкция сложна, а поэтому не всегда известны потоки энергии в них. При этом источники энергии могут быть спрятаны. Может быть также и непонятным сам принцип действия такой машины. В результате этого может сложиться мнение, что рассматриваемая тепло­вая машина представляет собой один из вариантов «вечного» двигателя второго рода.

    В технике используются тепловые машины, которые нам могут пока­заться в некотором смысле «вечными» двигателями второго рода. Как известно, биметаллическая пластинка при нагревании сгибается. Изгиб пластинки обусловлен тем, что материалы, из которых она изготовлена, имеют различный коэффициент линейного расширения. Тот материал, который имеет больший коэффициент линейного расширения, стремится и больше расшириться. Так как материалы скреплены между собой, то возникает изгиб пластинки (выпуклость образуется со стороны материала, имеющего больший коэффициент линейного расширения).

    Если такую биметаллическую пластинку поместить в окружающую сре­ду, то она будет периодически изгибаться и выпрямляться. При повышении температуры окружающей среды она будет изгибаться, и при понижении - выпрямляться. Если к концу такой биметаллической пластинки подвесить груз, то он будет периодически подниматься и опускаться. Следовательно, пластинка будет совершать полезную работу. Она может, например, заво­дить пружину часов.

    На первый взгляд кажется, что это все тот же «вечный» двигатель второго рода. Ведь он содержит только один источник теплоты - окру­жающую среду. На самом деле окружающая среда здесь периодически выступает в качестве то нагревателя (при повышении температуры), то охладителя (при понижении температуры). При этом для понижения температуры окружающей среды не используется механическая энергия, получаемая в результате изгиба биметаллической пластинки. Повышение и понижение температуры окружающей среды вызвано естественными процессами, протекающими в ней. Это эквивалентно приведению биметал­лической пластинки в контакт то с нагревателем, то с охладителем.

    Такие работающие кажущиеся «вечными» двигатели называют псевдо­вечными двигателями второго рода.

    • Вечный двигатель первого рода - двигатель (воображаемая машина), способный бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Их существование противоречит первому закону термодинамики. Согласно закону сохранения энергии
    • Вечный двигатель второго рода - воображаемая машина, которая будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел (см. Демон Максвелла). Они противоречат второму закону термодинамики. Согласно Второму началу термодинамики , все попытки создать такой двигатель обречены на провал.

    История

    Индийский или арабский перпетуум мобиле с небольшими косо закрепленными сосудами, частично наполненными ртутью.

    Попытки исследования места, времени и причины возникновения идеи вечного двигателя - задача весьма сложная. Не менее затруднительно назвать и первого автора подобного замысла. К самым ранним сведениям о Perpetuum mobile относится, по-видимому, упоминание, которое мы находим у индийского поэта, математика и астронома Бхаскары, а также отдельные заметки в арабских рукописях XVI в., хранящихся в Лейдене, Готе и Оксфорде . В настоящее время прародиной первых вечных двигателей по праву считается Индия. Так, Бхаскара в своем стихотворении, датируемом примерно 1150 г., описывает некое колесо с прикрепленными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Принцип действия этого первого механического перпетуум мобиле был основан на различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещенных на окружности колеса. Бхаскара обосновывает вращение колеса весьма просто: «Наполненное таким образом жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе» . Первые проекты вечного двигателя в Европе относятся к эпохе развития механики , приблизительно к XIII веку. К XVI - XVII векам идея вечного двигателя получила особенно широкое распространение. В это время быстро росло количество проектов вечных двигателей, подаваемых на рассмотрение в патентные ведомства европейских стран. Среди рисунков Леонардо Да Винчи была найдена гравюра с чертежом вечного двигателя.

    Неудачные конструкции вечных двигателей из истории

    Рис. 1. Одна из древнейших конструкций вечного двигателя

    На рис. 1 показана одна из древнейших конструкций вечного двигателя. Она представляет зубчатое колесо , в углублениях которого прикреплены откидывающиеся на шарнирах грузы. Геометрия зубьев такова, что грузы в левой части колеса всегда оказываются ближе к оси, чем в правой. По замыслу автора, это, в согласии с законом рычага , должно было бы приводить колесо в постоянное вращение. При вращении грузы откидывались бы справа и сохраняли движущее усилие.

    Однако, если такое колесо изготовить, оно останется неподвижным. Дифференциальная причина этого факта заключается в том, что хотя справа грузы имеют более длинный рычаг, слева их больше по количеству. В результате моменты сил справа и слева оказываются равны.

    Рис. 2. Конструкция вечного двигателя, основанного на законе Архимеда

    На рис. 2 показано устройство ещё одного двигателя. Автор решил использовать для выработки энергии закон Архимеда . Закон состоит в том, что тела, плотность которых меньше плотности воды, стремятся всплыть на поверхность. Поэтому автор расположил на цепи полые баки и правую половину поместил под воду. Он полагал, что вода будет их выталкивать на поверхность, а цепь с колёсами, таким образом, бесконечно вращаться.

    Здесь не учтено следующее: выталкивающая сила - это разница между давлениями воды, действующими на нижнюю и верхнюю части погруженного в воду предмета. В конструкции, приведённой на рисунке, эта разница будет стремиться вытолкнуть те баки, которые находятся под водой в правой части рисунка. Но на самый нижний бак, который затыкает собой отверстие, будет действовать лишь сила давления на его правую поверхность. И она будет превышать суммарную силу, действующую на остальные баки. Поэтому вся система просто прокрутится по часовой стрелке, пока не выльется вода.

    Патенты и авторские свидетельства на вечный двигатель

    Литература

    • Вознесенский Н. Н. О машинах вечного движения . М., 1926.
    • Ихак-Рубинер Ф. Вечный двигатель . М., 1922.
    • Кирпичёв В. Л. Беседы по механике . М.: ГИТЛ, 1951.
    • Мах Э. Принцип сохранения работы: История и корень его . СПб., 1909.
    • Михал С. Вечный двигатель вчера и сегодня . М.: Мир, 1984.
    • Орд-Хьюм А. Вечное движение. История одной навязчивой идеи . М.: Знание, 1980.
    • Перельман Я. И. Занимательная физика . Кн. 1 и 2. М.: Наука, 1979.
    • Петрунин Ю. Почему идея вечного двигателя не существовала в античности? // Петрунин Ю.Ю. Призрак Царьграда: неразрешимые задачи в русской и европейской культуре. - М.: КДУ, 2006, с. 75-82

    Примечания


    Wikimedia Foundation . 2010 .