Что делает тепловая машина. Основные принципы действия тепловых машин

). Преобразование осуществляется за счёт изменения внутренней энергии рабочего тела - на практике обычно пара или газа.

Идеальная тепловая машина - машина, в которой произведённая работа и разница между количеством подведённого и отведённого тепла равны. Работа идеальной тепловой машины описывается циклом Карно .

При работе часть тепла Q1 передается от нагревателя к рабочему телу, а затем часть энергии Q2 передается холодильнику, который охлаждает машину. КПД тепловой машины считается по формуле ((Q1-Q2)/Q1)х100.

Периодически действующий двигатель, совершающий работу за счет получаемого извне тепла, называется тепловой машиной .


Wikimedia Foundation . 2010 .

  • Озеро Долгое (округ Санкт-Петербурга)
  • Юнтолово (округ Санкт-Петербурга)

Смотреть что такое "Тепловая машина" в других словарях:

    ТЕПЛОВАЯ МАШИНА - машина (тепловой двигатель, тепловой насос и др.), в которой внутренняя энергия топлива преобразуется в механическую энергию, которая далее может превращаться в электрическую и любые др. виды энергии, а также машина, преобразующая работу в… … Большая политехническая энциклопедия

    ТЕПЛОВАЯ МАШИНА Большой Энциклопедический словарь

    ТЕПЛОВАЯ МАШИНА - ТЕПЛОВАЯ МАШИНА, устройство, в котором осуществляется преобразование теплоты в работу (тепловой двигатель) или наоборот работы в теплоту (холодильник). В основе действия тепловой машины лежит цикл термодинамический, совершаемый рабочим телом… … Современная энциклопедия

    тепловая машина - машина (тепловой двигатель, тепловой насос и др.), в которой осуществляется преобразование теплоты в работу или работы в теплоту. В основе действия тепловой машины лежит круговой процесс (цикл термодинамический), совершаемый рабочим телом (газом … Энциклопедический словарь

    тепловая машина - šiluminė mašina statusas T sritis fizika atitikmenys: angl. heat engine vok. Wärmekraftmaschine, f rus. тепловая машина, f pranc. machine thermique, f … Fizikos terminų žodynas

    Тепловая машина специальной обработки техники - комплект специального оборудования, смонтированного на шасси автомобиля повышенной проходимости. Ее специальное оборудование состоит из следующих основных систем и агрегатов: турбореактивного двигателя, поворотного устройства, кабины оператора,… … Словарь черезвычайных ситуаций

    тепловая машина специальной обработки - šiluminė specialiojo švarinimo mašina statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Specialiojo švarinimo įrenginys, kuriame naudojamas aviacinis reaktyvinis variklis; švarinama dujų ir lašų arba tiktai dujų srautu. Gali būti… … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

    Тепловая машина Карно - … Википедия

    Тепловая машина карно - … Википедия

    Идеальная тепловая машина - Тепловая машина устройство, преобразующее тепловую энергию в механическую работу (тепловой двигатель) или механическую работу в тепло (холодильник). Преобразование осуществляется за счет изменения внутренней энергии рабочего тела на практике… … Википедия

Тепловой машиной называется такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют двигатели внутреннего сгорания, дизельные и т.д.

Любая тепловая машина состоит из трех частей: теплоотдатчика, рабочего тела и теплоприемника. Теплоотдатчик имеет температуру Т 1 и отдает некоторое количество теплоты Q 1 рабочему телу. Рабочее тело (газ, пар, нагретая жидкость) совершает работу. Причем, не вся теплота Q 1 превращается в работу, а только некоторая ее часть

А = Q 1 – Q 2 (4.8)

Другая часть теплоты Q 2 передается телу с более низкой температурой (Т 2) – теплоприемнику. Таким образом, сущность работы тепловой машины заключается не только в получении теплоты Q 1 от теплоотдатчика и совершении работы А, но и передаче некоторого количества теплоты Q 2 теплоприемнику, температура которого ниже чем температура теплоотдатчика (Т 1 > Т 2). Вечный двигатель второго рода состоит из первых двух частей, то есть, теплота Q 1 полностью переходит в работу А, а это невозможно. Там, где нет перепада температур (Т 1 = Т 2), невозможно превратить теплоту в работу.

Чтобы получить математическое выражение второго начала термодинамики, рассматривают действие идеальной тепловой машины. Идеальной называют машину , которая работает без трения и потерь тепла. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно.

Цикл Карно состоит из четырех последовательно совершаемых процессов: изотермического расширения, адиабатического расширения, изотермического сжатия, адиабатического сжатия газа. Все процессы проводят обратимо, в результате чего газ возвращается в исходное положение.

В результате математических преобразований получают

(Q 1 – Q 2)/Q 1 = (Т 1 – Т 2)/Т 1 (4.9)

или h = А/Q 1 ; h = (Т 1 – Т 2)/Т 1 (4.10)

где h – коэффициент полезного действия (КПД) тепловой машины.

Коэффициентом полезного действия тепловой машины h называется отношение количества полученной работы А к количеству поглощенной теплоты Q 1 . На основании этого соотношения второму закону термодинамики можно дать следующую формулировку: коэффициент полезного действия тепловой машины не зависит от природы и вида тел, участвующих в процессе, а зависит только от разности температур теплообменника (Т 1) и теплоприемника (Т 2). Современные тепловые машины имеют КПД, не превышающие 33 - 35 %.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Воронеж 2011
Лекция № 1 (2ч) Введение Вопросы: 1. Предмет химии. Значение химии в изучении природы и развитии техники. 2. Осно

Основные количественные законы химии
К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIII – начале XIX веков, и

Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в

Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель. В одной и той же оболочке энергия подуровней возрастает в ряду E

Строение многоэлектронных атомов
Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись

Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,

Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений

Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят

Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи. Ковалентной связью называют химическую связь, образованную

Типы межмолекулярных взаимодействий
Связи, при образовании которых перестройка электронных оболочек не происходит, называются взаимодействием между молекулами. К основным видам взаимодействия молекул следует о

Пространственная структура молекул
Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод

Общая характеристика агрегатного состояния вещества
Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества. Аг

Газообразное состояние вещества. Законы идеальных газов. Реальные газы
Газы распространены в природе и находят широкое применение в технике. Их используют в качестве топлива, теплоносителей, сырья для химической промышленности, рабочего тела для выполнения механическо

Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн

Характеристики некоторых веществ
Вещество Вид кристалла Энергия кристаллической решетки, кДж/моль Темпер

Общие понятия термодинамики
Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин

Термохимия. Тепловые эффекты химических реакций
Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут

Закон Гесса и следствия из него
На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа

Свободная и связанная энергии. Энтропия системы
Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы

Влияние температуры на направление химических реакций
DH DS DG Направление реакции DH < 0 DS > 0 DG < 0

Понятие о химической кинетике
Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,

Факторы, влияющие на скорость химических реакций. Закон действующих масс
На скорость химических реакций оказывают влияние следующие факторы: природа и концентрации реагирующих веществ; температура, природа растворителя, присутствие катализатора и т.д.

Теория активизации молекул. Уравнение Аррениуса
Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол

Особенности каталитических реакций. Теории катализа
Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак

Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа

Константа химического равновесия
Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком: аA + вB D сC + dD, где

Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния

Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф если Ф = 1, то С = 2 (система бивариантна) Ф = 2, то С = 1 (система одновариантна) Ф = 3, то С = 0 (система безвариантна) Ф = 4, то С = -1 (

Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
Под термином «химическое сродство» понимают способность веществ вступать в химическое взаимодействие друг с другом. У различных веществ оно зависит от природы реагирующих ве

Сольватная (гидратная) теория растворения
Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст

Общие свойства растворов
В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе

Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич

Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з

Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр

При соблюдении этих условий коллоидные частицы приобретают электрический заряд и гидратную оболочку, что препятствует выпадению их в осадок
К дисперсионным методам получения коллоидных систем относятся: механические – дробление, растирание, размол и т. д.; электрический – получение золей металлов под действ

Устойчивость коллоидных растворов. Коагуляция. Пептизация
Под устойчивостью коллоидного раствора понимают постоянство основных свойств этого раствора: сохранение размеров частиц (агрегативная устойчивость

Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические. Рассмотрим молекулярно-кинетические

Особенности обменных процессов
Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны п

Особенности окислительно-восстановительных процессов
При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в

Общие понятия электрохимии. Проводники первого и второго рода
Электрохимия – это раздел химии, занимающийся изучением закономерностей взаимных превращений электрической и химической энергии. Электрохимические процессы можно разде

Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую. Гальваническим элементомназывают электрохим

Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен

Электродвижущая сила гальванического элемента
Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.

Поляризация и перенапряжение
При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода

Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты. При элект

Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист

Методы получения полимеров
Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ

Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.

Свойства полимеров
Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в

Применение полимеров
На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты). Волокна получают путем продавливания растворов или

Некоторые реагенты для идентификации катионов
Реагент Формула Катион Продукт реакции Ализарин C14H6O

Инструментальные методы анализа
В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определен

Машины, в которых внутренняя энергия топлива превращается в механическую, называются тепловыми двигателями. К ним относятся: двигатели внутреннего сгорания, паровая и газовая турбины, реактивные двигатели. Выясним, какие необходимы условия для того, чтобы в тепловом двигателе внутренняя энергия топлива превращалась в механическую энергию рабочего вала двигателя.

Вещество, которое совершает работу в тепловом двигателе, называется рабочим телом. В паровых двигателях таковым является пар, а в двигателе внутреннего сгорания, реактивном двигателе и в газовой турбине - газ. Как показывает теория тепловых двигателей, чтобы рабочее тело непрерывно совершало в них работу, необходимо наличие в двигателе нагревателя и холодильника. Устройство, в котором рабочее тело нагревается за счет энергии топлива, называется нагревателем (паровой котел, цилиндр). Устройство, в котором рабочее тело после совершения работы охлаждается, называется холодильником (атмосфера, конденсатор, в котором отработавший пар охлаждается проточной водой и превращается в воду).

Проделаем следующий опыт (рис. 30). Возьмем U-образную трубку с водой. Одно колено трубки соединено с теплоприемником (в котором находится рабочее тело - газ), в другом колене имеется поплавок А. Попеременно теплоприемник будем нагревать спиртовкой и опускать в холодную воду. Спиртовка выполняет роль нагревателя рабочего тела, холодная вода - роль холодильника. Работа такой модели теплового двигателя заключается в повторяющемся процессе - поднятии и опускании воды вместе с поплавком. Это происходит так: рабочее тело (газ), нагреваясь в нагревателе и расширяясь, совершает работу по поднятию воды с поплавком; для того чтобы рабочее тело снова могло совершить работу, его охлаждают в холодильнике, а затем опять нагревают. Пока этот процесс будет повторяться - модель такого двигателя будет действовать.

Тепловой двигатель работает непрерывно. Так происходит, потому, что в нем процессы, происходящие с рабочим телом, периодически повторяются: оно нагревается, расширяясь, совершает работу, охлаждается, снова нагревается и т. д. (Проследите это в работе двигателя внутреннего сгорания. Значит, для работы теплового двигателя необходимо иметь: нагреватель, рабочее тело и холодильник.

Для периодически повторяющихся процессов был открыт закон, по которому невозможно осуществить такой периодически повторяющийся процесс, единственным и конечным результатом которого было бы полное превращение количества теплоты, полученного от нагревателя, в работу. Применительно к тепловому двигателю это означает: количество теплоты, полученное рабочим телом от нагревателя, не может быть полностью использовано для совершения работы, так как невозможен процесс полного перехода внутренней энергии беспорядочного движения большого числа молекул в механическую энергию движения тела (поршня двигателя, рабочего колеса турбины).

Чтобы в реальных тепловых двигателях рабочее тело снова и снова совершало работу, отработавшую порцию рабочего тела удаляют из двигателя в холодильник, т. е. в атмосферу, или в конденсатор для подогрева воды, или для отопления (рис. 31). При этом, чтобы на удаление была совершена как можно меньшая работа, в холодильнике температура и давление всегда меньше, чем в рабочей камере двигателя. Благодаря разнице работы пара и работы по его удалению двигатель и совершает полезную работу. С энергетической точки зрения процесс, происходящий в тепловых двигателях, сводится к следующему (рис. 32): рабочее тело получает от нагревателя количество теплоты Q н , часть которого отдает холодильнику Q x , а за счет оставшейся части совершает работу А = Q н - Q x .

Многообразно применение тепловых двигателей. Карбюраторные двигатели, например, применяются в автомобилях, мотоциклах; дизели - в тракторах, автомобилях большой грузоподъемности, тепловозах, теплоходах, морских судах; паровые турбины - на электростанциях; газовые турбины - на электростанциях, газотурбовозах, в доменных печах для приведения в действие воздуходувок, являются частью одного из типов реактивного двигателя; реактивные двигатели - в авиации, в ракетах.

Тема: «Принцип действия тепловой машины. Тепловая машина с наибольшим коэффициентом полезного действия».

Форма: Комбинированный урок с использованием компьютерных технологий.

Цели:

  • Показать важность применения тепловой машины в жизни человека.
  • Изучить принцип работы реальных тепловых двигателей и идеального двигателя работающего по циклу Карно.
  • Рассмотреть возможные пути повышения КПД реального двигателя.
  • Развить у учащихся любознательность, интерес к техническому творчеству, уважение к научным достижениям ученых и инженеров.

План урока.

№ п/п

Вопросы

Время
(минут)

1 Показать необходимость применения тепловых машин в современных условиях.
2 Повторение понятия «тепловой машины». Виды тепловых машин: ДВС (карбюраторный, дизельный), паровая и газовая турбины, турбореактивный и ракетный двигатели.
3 Объяснение нового теоретического материала.
Схема и устройство тепловой машины, принцип работы, КПД.
Цикл Карно, идеальная тепловая машина, её КПД.
Сравнение КПД реальной и идеальной тепловой машины.
4 Решение задачи № 703 (Степанова), № 525 (Бендриков).
5
Работа с моделью тепловой машины.
6 Подведение итогов. Домашнее задание § 33, задачи № 700 и № 697 (Степанова)

Теоретический материал

С давних времён человек хотел освободиться от физических усилий или облегчить их при перемещении чего-либо, располагать большей силой, быстротой.
Создавались сказания о коврах самолётах, семимильных сапогах и волшебниках, переносящих человека за тридевять земель мановением жезла. Таская тяжести, люди изобрели тележки, ведь катить легче. Потом они приспособили животных – волов, оленей, собак, больше всего лошадей. Так появились повозки, экипажи. В экипажах люди стремились к комфорту, всё более совершенствуя их.
Стремление людей увеличить скорость ускоряло и смену событий в истории развития транспорта. Из греческого «аутос» – «сам» и латинского «мобилис» – «подвижный» в европейских языках сложилось прилагательное «самодвижущийся», буквально «авто – мобильный».

Оно относилось к часам, куклам-автоматам, ко всяким механизмам, в общем, ко всему, что служило как бы дополнением «продолжением», «усовершенствованием» человека. В ХVIII веке попробовали заменить живую силу силой пара и применяли к безрельсовым повозкам термин «автомобиль».

Почему же счёт возраста автомобиля ведут от первых «бензиномобилей» с двигателем внутреннего сгорания, изобретённых и построенных в 1885-1886 годах? Как бы забыв о паровых и аккумуляторных (электрических) экипажах. Дело в том, что ДВС произвёл подлинный переворот в транспортной технике. В течение длительного времени он оказался наиболее отвечающим идее автомобиля и потому надолго сохранил своё главенствующее положение. Доля автомобилей с ДВС составляет на сегодня более 99,9% мирового автомобильного транспорта. <Приложение 1 >

Основные части теплового двигателя

В современной технике механическую энергию получают главным образом за счет внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, называют тепловыми двигателями. <Приложение 2 >

Для совершения работы за счет сжигания топлива в устройстве, называемом нагревателем, можно воспользоваться цилиндром, в котором нагревается и расширяется газ и перемещает поршень. <Приложение 3 > Газ, расширение которого вызывает перемещение поршня, называют рабочим телом. Расширяется же газ потому, что его давление выше внешнего давления. Но при расширении газа его давление падает, и рано или поздно оно станет равным внешнему давлению. Тогда расширение газа закончится, и он перестанет совершать работу.

Как же следует поступить, чтобы работа теплового двигателя не прекращалась? Для того чтобы двигатель работал непрерывно, необходимо, чтобы поршень после расширения газа возвращался каждый раз в исходное положение, сжимая газ до первоначального состояния. Сжатие же газа может происходить только под действием внешней силы, которая при этом совершает работу (сила давления газа в этом случае совершает отрицательную работу). После этого вновь могут происходить процессы расширения и сжатия газа. Значит, работа теплового двигателя должна состоять из периодически повторяющихся процессов (циклов) расширения и сжатия.

На Рисунке 1 изображены графически процессы расширения газа (линия АВ ) и сжатия до первоначального объема (линия CD). Работа газа в процессе расширения положительна (AF > 0 ABEF . Работа газа при сжатии отрицательна (так как AF < 0 ) и численно равна площади фигуры CDEF. Полезная работа за этот цикл численно равна разности площадей под кривыми АВ и CD (закрашена на рисунке).
Наличие нагревателя, рабочего тела и холодильника принципиально необходимое условие для непрерывной циклической работы любого теплового двигателя.

Коэффициент полезного действия тепловой машины

Рабочее тело, получая некоторое количество теплоты Q 1 от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q 1 - |Q 2 |. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины:

Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПДкак можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Как этого можно достигнуть?
Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г.

Цикл Карно.

Допустим, что газ находится в цилиндре, стенки и поршень которого сделаны из теплоизоляционного материала, а дно - из материала с высокой теплопроводностью. Объем, занимаемый газом, равен V 1 .

Приведем цилиндр в контакт с нагревателем (Рисунок 2) и предоставим газу возможность изотермически расширяться и совершать работу. Газ получает при этом от нагревателя некоторое количество теплоты Q 1 . Этот процесс графически изображается изотермой (кривая АВ ).

Когда объем газа становится равным некоторому значению V 1 ’< V 2 , дно цилиндра изолируют от нагревателя, после этого газ расширяется адиабатно до объема V 2 , соответствующего максимально возможному ходу поршня в цилиндре (адиабата ВС ). При этом газ охлаждается до температуры T 2 < T 1 .
Теперь охлажденный газ можно изотермически сжимать при температуре Т2. Для этого его нужно привести в контакт с телом, имеющим ту же температуру Т 2 , т. е. с холодильником, и сжать газ внешней силой. Однако в этом процессе газ не вернется в первоначальное состояние - температура его будет все время ниже чем Т 1 .
Поэтому изотермическое сжатие доводят до некоторого промежуточного объема V 2 ’>V 1 (изотерма CD ). При этом газ отдает холодильнику некоторое количество теплоты Q 2 , равное совершаемой над ним работе сжатия. После этого газ сжимается адиабатно до объема V 1 , при этом его температура повышается до Т 1 (адиабата DA ). Теперь газ вернулся в первоначальное состояние, при котором объем его равен V 1 , температура - T 1 , давление - p 1 ,и цикл можно повторить вновь.

Итак, на участке ABC газ совершает работу (А > 0), а на участке CDA работа совершается над газом (А < 0). На участках ВС и AD работа совершается только за счет изменения внутренней энергии газа. Поскольку изменение внутренней энергии UBC = – UDA , то и работы при адиабатных процессах равны: АВС = –АDA. Следовательно, полная работа, совершаемая за цикл, определяется разностью работ, совершаемых при изотермических процессах (участки АВ и CD ). Численно эта работа равна площади фигуры, ограниченной кривой цикла ABCD .
В полезную работу фактически преобразуется только часть количества теплоты QT, полученной от нагревателя, равная QT 1 – |QT 2 |. Итак, в цикле Карно полезная работа A = QT 1 – |QT 2 |.
Максимальный коэффициент полезного действия идеального цикла, как показал С. Карно, может быть выражен через температуру нагревателя (Т 1) и холодильника (Т 2):

В реальных двигателях не удается осуществить цикл, состоящий из идеальных изотермических и адиабатных процессов. Поэтому КПД цикла, осуществляемого в реальных двигателях, всегда меньше, чем КПД цикла Карно (при одних и тех же температурах нагревателей и холодильников):

Из формулы видно, что КПД двигателей тем больше, чем выше температура нагревателя и чем ниже температура холодильника.

Задача № 703

Двигатель работает по циклу Карно. Как изменится КПД теплового двигателя, если при постоянной температуре холодильника 17 о С температуру нагревателя повысить со 127 до 447 о С?

Задача № 525

Определите КПД двигателя трактора, которому для выполнения работы 1,9 · 107Дж потребовалось 1,5 кг топлива с удельной теплотой сгорания 4,2 · 107Дж/кг.

Выполнение компьютерного теста по теме. <Приложение 4 > Работа с моделью тепловой машины.