Принцип действия тепловой машины. Необходимые условия работы тепловых машин

Необходимые условия работы тепловых машин

Создание и развитие термодинамики было вызвано, прежде всего, необходимостью описания работы и расчёта параметров тепловых машин . Тепловые машины, или тепловые двигатели, предназначены для получения технической (полезной) работы за счёт тепла, выделяемого вследствие химических реакций (сгорание топлива), ядерных реакций или по другим причинам, например нагрева солнечной энергией.

Из рассмотрения основных принципов работы тепловых машин вне зависимости от их конструктивного исполнения следует, что непрерывное превращение тепловой энергии в механическую работу совершается в них при помощи вспомогательного тела , получившего название в термодинамике рабочего тела . Как было отмечено ранее, наиболее подходящими в качестве рабочих тел по своим физическим свойствам является газы и пары жидкостей, так как они характеризуются наибольшей способностью к изменению своих объёмов при изменении Р и Т .

Кроме того, работа этих машин возможна только при соблюдении двух непременных условий. Первое условие состоит в том, что любая тепловая машина должна работать циклично , то есть рабочее тело, совершая за определённый промежуток времени ряд процессов расширения и сжатия, должно возвращаться в исходное состояние. Этот цикл должен повторяться в течение всего периода работы машины, причём в зависимости от конструктивного исполнения тепловой машины отдельные части цикла могут осуществляться в разных её составных частях. При отсутствии цикла, например при любом процессе только расширения газа в рабочей камере (цилиндр двигателя внутреннего сгорания, каналы рабочих лопаток паровых и газовых турбин) тепловой машины, соответственно наступит момент, когда Р и Т рабочего тела станут равными с Р и Т окружающей среды, и на этом получение работы прекратится. В этом случае можно получить лишь ограниченное количество работы. Для повторного получения работы необходимо либо в процессе сжатия возвратить рабочее тело в первоначальное состояние, либо каким-то образом удалить из рабочей камеры отработанное рабочее тело и заполнить эту камеру новой порцией этого тела. С точки зрения термодинамического анализа работы тепловой машины вовсе не обязательно иметь дело с новыми порциями рабочего тела, так как для процесса преобразования тепловой энергии в механическую работу безразлично, остаётся ли в рабочей камера прежнее рабочее тело или вводится новое. Поэтому можно исходить из того, что в цилиндре тепловой машины находится одно и то же количество рабочего тела, которое, циклично проходя через ряд изменений своего состояния из начального в конечное и обратно, преобразует тепловую энергию в механическую работу.

v
P
v 2
v 1
Р 1
Р 2
q 1
q 2

Рис.6.6.1. Цикл тепловой машины

Рассмотрим круговой цикл тепловой машины, изображённый на рисунке. В процессе расширения рабочего тела по линии 1-3-2 к нему от источника тепловой энергии с температурой Т 1 , то есть от горячего источника тепла , подводится тепло в количестве q 1 . В результате имеет место дополнительное увеличение объёма рабочего тела. Таким образом, расширение рабочего тела осуществляется как за счёт снижения давления в рабочей камере, так и за счёт повышения его температуры. Однако для получения механической работы процесс расширения нагретого рабочего тела в рабочей камере должен осуществляться под определённым противодавлением со стороны подвижных поверхностей рабочей камеры. При этом получается положительная удельная механическая работа l 1 , а именно работа расширения рабочего тела, эквивалентна площади S 1-3-2-6-5-1 . При достижении точки 2 рабочее тело должно быть возвращено в первоначальное состояние, то есть в точку 1. Для этого нужно сжать рабочее тело.

Для того чтобы тепловая машина непрерывно производила механическую энергию, работа расширения рабочего тела должна быть больше работы его сжатия. Поэтому кривая сжатия 2-4-1 должна лежать ниже кривой расширения. Если процесс сжатия пойдёт по линии 2-3-1 , то никакой технической, то есть полезной, работы получено не будет, так как в этом случае будет l 1 = l 2 , где l 2 – отрицательная удельная работа сжатия рабочего тела. Поэтому для получения полезной работы необходимо в процессе расширения понизить давление рабочего тела за счёт отвода от него части тепла q 2 к источнику тепла с более низкой температурой Т 2 , то есть к холодному источнику тепла . Соответственно, l 2 эквивалентна площади S 2-4-1-5-6-2 . В результате каждый килограмм рабочего тела совершает за цикл полезную работу l ц , которая эквивалентна площади S 1-3-2-4-1 , ограниченной контуром цикла. Таким образом, для непрерывной работы тепловой машины необходим циклический процесс, в котором к рабочему телу от горячего источника подводится тепло q 1 и отводится от него к холодному источнику тепло q 2 . Наличие, по меньшей мере, двух источников тепла с разными температурами - горячего и холодного – является вторым необходимым условием работы тепловых машин .

Чрезвычайно важно подчеркнуть, что всё тепло q 1 , полученное рабочим телом от горячего источника, не может быть превращено в работу. Часть q 1 , то есть q 2 , обязательно должна быть отдана другому телу (телам) с более низкой температурой. В качестве такого тела может выступать атмосферный воздух, большой объём воды и тому подобное. Многочисленные попытки создать тепловую машину, в которой всё тепло q 1 превращалось бы в работу, то есть имело бы место равенство q 2 = 0, неизбежно оканчивались провалом. Такая машина, которая могла бы превращать всё подводимое к ней тепло в работу, получила название вечного двигателя второго рода , или перпетуум мобиле (perpetuum mobile ) второго рода . Весь накопленный наукой опытный материал говорит о том, что такой двигатель невозможен.

Ещё раз отметим, что наличие холодного источника тепла и передача ему части полученного от горячего источника тепла является обязательным, так как иначе работа тепловой машины невозможна. Действительно, для получения непрерывной механической работы необходимо наличие потока энергии, в данном случае потока тепла. Если же холодный источник будет отсутствовать, то рабочее тело неизбежно придёт в тепловое равновесие с горячим источником и поток тепла прекратится.

1-3-2 и 2-4-1 соответственно будет иметь вид:

q 1 = + Du + l 1 ;

Величины q 2 иl 2 необходимо брать по модулю, что позволит избежать путаницы со знаками у q 2 , так как уходящее из системы тепло имеет знак минус. Внутренняя энергия рабочего тела за цикл не должна изменяться, и поэтому перед Du в уравнениях проставлены прямо противоположные алгебраические знаки. Сложив эти уравнения, получим:

q 1 - |q 2 | = q ц = l 1 - ½l 2 ½ = l ц, (6.6.1)

где q ц - часть тепла горячего источника, превращаемая в цикле в работу; l ц – работа цикла 1-3-2-4-1 .

Так как в рассматриваемом случае l 1 > l 2 , то работа цикла положительна. Она, как показывает (6.6.1), равна разности подведённого и отведённого в цикле тепла.

Эффективность преобразования q 1 в l ц оценивается термическим (термодинамическим, тепловым) КПД цикла тепловой машины:

. (6.6.2)

Таким образом, термический КПД цикла тепловой машины есть отношение полученной в цикле полезной работы l ц ко всему введённому в рабочее тело теплу q 1 .

Цикл, состоящий из обратимых процессов, называется идеальным. При этом рабочее тело в таком цикле не должно подвергаться химическим изменениям. Если хотя бы один из процессов, входящих в состав цикла, будет необратимым, то цикл будет уже не идеальным. Для выполнения идеального цикла в тепловой машине (двигателе) должны полностью отсутствовать тепловые и механические потери. Такая машина получила название идеальной тепловой машины (идеального теплового двигателя).

Так как ½q 2 ½> 0, то h Т < 1,0, то есть КПД тепловой машины, даже идеальной, всегда будет меньше 1,0. Результаты исследований идеальных циклов могут быть перенесены на действительные, то есть необратимые, процессы реальных тепловых машин путём введения опытных поправочных коэффициентов.

Соотношение (6.6.2) является математическим выражением принципа эквивалентности тепловой и механической энергии. Если исключить из схемы тепловой машины холодный источник, то формально принцип эквивалентности не будет нарушен. Однако, как уже отмечалось выше, такая машина работать не будет.

Циклы, в результате которых получается положительная работа, то есть когда l 1 > l 2 , называются прямыми циклами , или циклами теплового двигателя . По этим циклам работают двигатели внутреннего сгорания, реактивные двигатели, газовые и паровые турбины и так далее.

Если цикл, изображённый на рис.6.6.1, представить протекающим в обратном направлении, то есть по замкнутой кривой 1-4-2-3-1 (см. рис. 6.6.2), то для его осуществления необходимо уже затратить работу l ц , которая будет уже отрицательной и эквивалентной площади S 1-4-2-3-1 . Охлаждаемым телом в такой машине является холодный источник тепла, а нагреваемым - окружающая среда, то есть горячий источник тепла. Такие циклы называются циклами холодильной машины, или холодильными (обратными) циклами.

Чтобы поддержать низкую температуру охлаждаемого тела, нужно непрерывно отводить от него тепло q 2 , которое поступает в рабочее тело от холодного источника. Этот отвод в холодильном цикле осуществляется в процессе 1-4-2 расширения рабочего тела, которое это тепло воспринимает и совершает при этом положительную работу l 2 , эквивалентную площади
S 1-4-2-6-5-1 . Возврат рабочего тела в исходное состояние происходит в процессе сжатия по кривой 2-3-1 , расположенной над кривой процесса расширения, то есть в процессе, происходящем при более высоких температурных условиях. Это даёт возможность передавать отводимое от рабочего тела тепло q 1 горячему источнику тепла, в качестве которого обычно выступает окружающая среда. На сжатие затрачивается отрицательная работа l 1 определяемая на графике площадью S 2-3-1-5-6-2 .

v
P
v 2
v 1
Р 1
Р 2
q 1
q 2

Рис. 6.6.2. Цикл холодильной машины

Уравнение 1-го закона термодинамики для процессов 1-4-2 и 2-3-1 с учётом алгебраических знаков перед составляющими соответственно имеют вид:

q 2 = +Du + l 2 ; -½q 1 ½= - Du - ½l 1 ½ .

Сложение по частям обоих уравнений даёт:

q 2 - ½q 1 ½= - (½l 1 ½ - l 2) = -½l ц ½ (6.6.3)

½q 1 ½= q 2 +½l ц.½ (6.6.4)

Это выражение показывает, что тепло q 1 , передаваемое горячему источнику тепла, складывается из тепла q 2 , поступившего в рабочее тело из холодного источника тепла, и работы цикла l ц . Так как ½l 1 ½ > l 2 , то l ц < 0 и, следовательно, для непрерывной работы холодильной машины необходимо затрачивать работу. Таким способом осуществляется передача тепла с низшего температурного уровня на высший, то есть производится охлаждение некоторых частей ОС и создаётся в нужном месте температура ниже температуры самой ОС . По холодильному (обратному циклу) работают холодильные машины, тепловые насосы и так далее.

Эффективность работы холодильной машины оценивается так называемым холодильным коэффициентом e , определяемым отношением отнятой от холодного источника ограниченной ёмкости полезного тепла q 2 к затраченной работе l ц :

. (6.6.5)

Холодильный коэффициент характеризует эффективность передачи тепла от холодного источника тепла к горячему источнику тепла. Он будет тем больше, чем большее количество тепла q 2 будет взято от холодного источника тепла и передано горячему источнику тепла и чем меньше будет на это затрачено работы l ц . В отличие от термического (термодинамического,теплового) КПДh Т холодильный коэффициент 𝜺 может быть больше, меньше и равным единице.

В холодильной машине q 1 выбрасывается в окружающую среду, являющуюся источником неограниченной ёмкости . Поэтому холодильная машина может быть использована не только для охлаждения различных тел, но и для отопления помещения. Действительно, даже обычный бытовой холодильник, охлаждая помещённые в нём продукты, одновременно нагревает воздух в комнате. Принцип динамического отопления был предложен У. Томсоном и положен в основу действия современных тепловых насосов . Тепловыми насосами являются машины, основным продуктом производства которых является тепло q 1 , передаваемое в источник ограниченной ёмкости . Их эффективность оценивается отопительным коэффициентом , представляющим собой отношение переданного потребителю тепла q 1 к l ц:

В этом случае тепло q 2 отбирается от источника неограниченной ёмкости (атмосферный воздух, большие объёмы воды, породный массив).

Преимущество теплового насоса по сравнению с электрическим нагревателем заключается в том, что на нагрев помещений используется не только преобразованная в тепло электрическая энергия, но и тепло, отобранное от окружающей среды. Поэтому эффективность тепловых насосов может быть гораздо выше эффективности электрических нагревателей.

Комбинация из цикла двигателя и циклов теплового насоса или холодильной установки представляет собой цикл теплового трансформатора , который позволяет перекачивать тепло от источника с одной Т к источнику с другой Т в ходе совмещённого цикла. Назначение теплового трансформатора – изменение потенциала тепла. Если трансформатор предназначен для получения тепла с более низкой Т , чем исходная Т горячего источника, то такой трансформатор называется понижающим . Если в трансформаторе получено тепло при Т более высокой, чем исходное тепло, то такой трансформатор называется повышающим .

Таким образом, работа любой тепловой или холодильной машины возможна только при наличии двух источников тепла: горячего и холодного.

Тепловой двигатель – устройство, преобразующее внутреннюю энергию сгоревшего топлива в механическую энергию. Виды тепловых двигателей : 1) двигатели внутреннего сгорания: а) дизельные, б) карбюраторные; 2) паровые двигатели; 3) турбины: а) газовые, б) паровые.

Все названые тепловые двигатели имеют разную конструкцию, но состоят из трех основных частей : нагревателя, рабочего тела и холодильника. Нагреватель обеспечивает поступление теплоты в двигатель. Рабочее тело превращает часть полученной теплоты в механическую работу. Холодильник забирает от рабочего тела часть теплоты.

T 1 – температура нагревателя;

T 2 –температура холодильника;

Q 1 – теплота, полученная

от нагревателя;

Q 2 – теплота, отданная

холодильнику;

A" – работа, выполненная

двигателем.

Работа любого теплового двигателя состоит из повторяющихся циклических процессов – циклов. Цикл – это такая последовательность термодинамических процессов, в результате которых система возвращается в начальное состояние.

Коэффициент полезного действия (КПД) тепловой машины – это отношение совершенной двигателем работы к количеству теплоты, полученному от нагревателя: .

Французский инженер Сади Карно рассмотрел идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он нашел оптимальный идеальный цикл теплового двигателя, состоящий из двух изотермических и двух адиабатических обратимых процессов – цикл Карно . КПД такой тепловой машины с нагревателем при температуре и холодильником при температуре : . Независимо от конструкции, выбора рабочего тела и типа процессов в тепловом двигателе его КПД не может быть больше КПД теплового двигателя, работающего по циклу Карно, и имеющего те же, что и у данного теплового двигателя, температуру нагревателя и холодильника.

КПД тепловых двигателей невысок, поэтому важнейшей технической задачей является его повышение. Тепловые двигатели имеют два существенных недостатка. Во-первых, в большинстве тепловых двигателей используется органическое топливо, добыча которого быстро истощает ресурсы планеты. Во-вторых, в результате сгорания топлива в окружающую среду выбрасывается огромное количество вредных веществ, что создает значительные экологические проблемы.

С изучением вопроса о максимальном КПД тепловых машин связано открытие в 1850 г. немецким физиком Р. Клазиусом второго начала термодинамики : невозможен такой процесс, при котором теплота самопроизвольно переходила бы от более холодных тел к более горячим телам.

Физические величины и их единицы измерения:

Наименование величина Обозначение Единица измерения Формула
Относительная молекулярная масса M r (эм эр) безразмерная величина
Масса одной молекулы (атома) m 0 кг
Масса m кг
Молярная масса M
Количество вещества ν (ню) моль (моль) ;
Число частиц N (эн) безразмерная величина
Давление p (пэ) Па (паскаль)
Концентрация n (эн)
Объём V (вэ)
Средняя кинетическая энергия поступательного движения молекулы Дж (джоуль)
Температура по шкале Цельсия t °C
Температура по шкале Кельвина T К (кельвин)
Средняя квадратичная скорость молекул
Поверхностное натяжение σ (сигма)
Абсолютная влажность ρ (ро)
Относительная влажность φ (фи) %
Внутренняя энергия U (у) Дж (джоуль)
Работа А (а) Дж (джоуль)
Количество теплоты Q (ку) Дж (джоуль)

Галина Денисенко 06.02.2016 11:31

Если gm это тепло, переданное нагревателем тепловой машины, то работа будет вычисляться как РАЗНОСТЬ, а не СУММА gm и Q холодильника. Просьба проверить правильный вариант ответа и заменить "4" на "3". Спасибо, с уважением Денисенко Г.Б. учитель физики.

Антон

Условие задачи некорректно. Указано, что , поэтому его приходится прибавлять.

Гость 03.03.2016 19:29

Доброго времени суток!

Считаю, что условие данной задачи некорректным по следующим основаниям.

В условии задачи сказано, что "ра­бо­чее тело ма­ши­ны пе­ре­да­ло

хо­ло­диль­ни­ку ко­ли­че­ство теп­ло­ты Qхол < 0". Но если Qхол - это

количество теплоты, переданной от рабочего тела холодильнику, то знак

Qхол > 0 - означает направление потока тепла - от холодильника к

нагревателю, а знак же (как в условии задачи) Qхол < 0 - означает, что

поток тепла направлен от холодильника к нагревателю (!), что

противоречит Второму закону (началу) термодинамики!

Традиционно, Qхол - количество теплоты, переданной рабочим телом

машины холодильнику, - величина большая нуля (положительная), что

отражает соответствие законам термодинамики.

Формула для к.п.д. тепловой машины в виде n = (Q1+Q2)/Q1 (со знаком

"+" между Q1 и Q2) содержатся в некоторой учебной и справочной

литературе, но в это случае считают, что Q1 - это количество теплоты,

полученной рабочим тело за от нагревателя, а Q2 - это количество

теплоты, ПОЛУЧЕННОЙ рабочим телом от холодильника, при этом Q2 < 0 ,

и это означает, что рабочее тело передаёт холодильнику количество

теплоты -Q2 (со знаком "минус"). Смотрите, например: Яворский Б.М. и

Детлаф А.А. Справочник по физике: 2-е изд., перераб. - М., Главная

редакция физико-математической литературы, 1985, - стр.119, пункт 7.

С учетом изложенного, считаю, что условие данной задачи и её решение

должны быть переработаны (исправлены) соответствующим образом.

С другой стороны, и сама постановка

с выбором "правильных" формул глуповатая, даже если исправить знак в неравенстве.

С уважением, Ершов Александр Петрович, док. физ.-мат. наук, профессор, Заведующий лабораторией Физики взрыва

Института гидродинамики им. М.А. Лаврентьева

Сибирского отделения Российской академии наук

http://www.hydro.nsc.ru/structure/persons/index.php?id=68

Гость 05.03.2016 16:41

Уважаемый редактор! В термодинамике есть правило: если за Q принимается количество теплоты, отданное телом, то Q>0 - означает, что поток тепла направлен от тела к другому(им) телу(ам) (тело теряет тепло в количестве Q), а Q<0 при этом означает, что поток тепла направлен к телу (тело получает тепло в количестве |Q|). Поэтому, условие Qхол<0 означает, что рабочее тело фактически не передало, а получило от холодильника количество теплоты |Qхол|, а это - абсурд. Пожалуйста, верно расставляйте акценты в оценке данного обстоятельства: это не просто некорректность условия задачи, а явная ошибка составителей данной задачи, показывающая их достаточно низкий уровень. Всего Вам доброго и успехов в Ваших начинаниях.

Тепловой машиной называется такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют двигатели внутреннего сгорания, дизельные и т.д.

Любая тепловая машина состоит из трех частей: теплоотдатчика, рабочего тела и теплоприемника. Теплоотдатчик имеет температуру Т 1 и отдает некоторое количество теплоты Q 1 рабочему телу. Рабочее тело (газ, пар, нагретая жидкость) совершает работу. Причем, не вся теплота Q 1 превращается в работу, а только некоторая ее часть

А = Q 1 – Q 2 (4.8)

Другая часть теплоты Q 2 передается телу с более низкой температурой (Т 2) – теплоприемнику. Таким образом, сущность работы тепловой машины заключается не только в получении теплоты Q 1 от теплоотдатчика и совершении работы А, но и передаче некоторого количества теплоты Q 2 теплоприемнику, температура которого ниже чем температура теплоотдатчика (Т 1 > Т 2). Вечный двигатель второго рода состоит из первых двух частей, то есть, теплота Q 1 полностью переходит в работу А, а это невозможно. Там, где нет перепада температур (Т 1 = Т 2), невозможно превратить теплоту в работу.

Чтобы получить математическое выражение второго начала термодинамики, рассматривают действие идеальной тепловой машины. Идеальной называют машину , которая работает без трения и потерь тепла. В ней рабочим телом является идеальный газ. Работа машины основана на принципе обратимого термодинамического цикла, называемого циклом Карно.

Цикл Карно состоит из четырех последовательно совершаемых процессов: изотермического расширения, адиабатического расширения, изотермического сжатия, адиабатического сжатия газа. Все процессы проводят обратимо, в результате чего газ возвращается в исходное положение.

В результате математических преобразований получают

(Q 1 – Q 2)/Q 1 = (Т 1 – Т 2)/Т 1 (4.9)

или h = А/Q 1 ; h = (Т 1 – Т 2)/Т 1 (4.10)

где h – коэффициент полезного действия (КПД) тепловой машины.

Коэффициентом полезного действия тепловой машины h называется отношение количества полученной работы А к количеству поглощенной теплоты Q 1 . На основании этого соотношения второму закону термодинамики можно дать следующую формулировку: коэффициент полезного действия тепловой машины не зависит от природы и вида тел, участвующих в процессе, а зависит только от разности температур теплообменника (Т 1) и теплоприемника (Т 2). Современные тепловые машины имеют КПД, не превышающие 33 - 35 %.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Воронеж 2011
Лекция № 1 (2ч) Введение Вопросы: 1. Предмет химии. Значение химии в изучении природы и развитии техники. 2. Осно

Основные количественные законы химии
К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIII – начале XIX веков, и

Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в

Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель. В одной и той же оболочке энергия подуровней возрастает в ряду E

Строение многоэлектронных атомов
Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись

Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,

Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений

Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят

Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи. Ковалентной связью называют химическую связь, образованную

Типы межмолекулярных взаимодействий
Связи, при образовании которых перестройка электронных оболочек не происходит, называются взаимодействием между молекулами. К основным видам взаимодействия молекул следует о

Пространственная структура молекул
Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод

Общая характеристика агрегатного состояния вещества
Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества. Аг

Газообразное состояние вещества. Законы идеальных газов. Реальные газы
Газы распространены в природе и находят широкое применение в технике. Их используют в качестве топлива, теплоносителей, сырья для химической промышленности, рабочего тела для выполнения механическо

Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн

Характеристики некоторых веществ
Вещество Вид кристалла Энергия кристаллической решетки, кДж/моль Темпер

Общие понятия термодинамики
Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин

Термохимия. Тепловые эффекты химических реакций
Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут

Закон Гесса и следствия из него
На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа

Свободная и связанная энергии. Энтропия системы
Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы

Влияние температуры на направление химических реакций
DH DS DG Направление реакции DH < 0 DS > 0 DG < 0

Понятие о химической кинетике
Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,

Факторы, влияющие на скорость химических реакций. Закон действующих масс
На скорость химических реакций оказывают влияние следующие факторы: природа и концентрации реагирующих веществ; температура, природа растворителя, присутствие катализатора и т.д.

Теория активизации молекул. Уравнение Аррениуса
Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол

Особенности каталитических реакций. Теории катализа
Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак

Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа

Константа химического равновесия
Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком: аA + вB D сC + dD, где

Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния

Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф если Ф = 1, то С = 2 (система бивариантна) Ф = 2, то С = 1 (система одновариантна) Ф = 3, то С = 0 (система безвариантна) Ф = 4, то С = -1 (

Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
Под термином «химическое сродство» понимают способность веществ вступать в химическое взаимодействие друг с другом. У различных веществ оно зависит от природы реагирующих ве

Сольватная (гидратная) теория растворения
Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст

Общие свойства растворов
В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе

Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич

Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з

Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр

При соблюдении этих условий коллоидные частицы приобретают электрический заряд и гидратную оболочку, что препятствует выпадению их в осадок
К дисперсионным методам получения коллоидных систем относятся: механические – дробление, растирание, размол и т. д.; электрический – получение золей металлов под действ

Устойчивость коллоидных растворов. Коагуляция. Пептизация
Под устойчивостью коллоидного раствора понимают постоянство основных свойств этого раствора: сохранение размеров частиц (агрегативная устойчивость

Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические. Рассмотрим молекулярно-кинетические

Особенности обменных процессов
Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны п

Особенности окислительно-восстановительных процессов
При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в

Общие понятия электрохимии. Проводники первого и второго рода
Электрохимия – это раздел химии, занимающийся изучением закономерностей взаимных превращений электрической и химической энергии. Электрохимические процессы можно разде

Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую. Гальваническим элементомназывают электрохим

Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен

Электродвижущая сила гальванического элемента
Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.

Поляризация и перенапряжение
При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода

Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты. При элект

Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист

Методы получения полимеров
Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ

Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.

Свойства полимеров
Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в

Применение полимеров
На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты). Волокна получают путем продавливания растворов или

Некоторые реагенты для идентификации катионов
Реагент Формула Катион Продукт реакции Ализарин C14H6O

Инструментальные методы анализа
В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определен