Вечный двигатель второго рода невозможен формулировка. Смерть от классической термодинамики

Создан двигатель в котором локально нарушается второе начало термодинамики.

Физики из МФТИ выяснили, как создать «локальный» вечный двигатель второго рода - квантовое устройство, в котором не соблюдается второе начало термодинамики и КПД которого может достигать 100%. Однако второе начало в нём нарушается только локально, в рамках системы в целом законы физики остаются незыблемыми.

Второй закон термодинамики гласит, что тепловая энергия не может переходить от менее горячих объектов к более горячим, или, в иной формулировке - величина энтропии (степени неупорядоченности) в замкнутой системе либо растёт, либо остаётся постоянной. Согласно ещё одной формулировке закона, КПД тепловой машины никогда не может достигать 100%, иными словами, невозможен вечный двигатель второго рода.

«Любой тепловой двигатель состоит из нагревателя, который собственно и является источником энергии, и холодильника, задача которого состоит в охлаждении рабочего тела двигателя. Холодильник понижает энтропию двигателя и при этом неизбежно тратит впустую часть тепловой энергии, полученной от нагревателя. Именно поэтому КПД теплового двигателя никогда не достигает 100%», - поясняет ведущий автор исследования Андрей Лебедев, сотрудник Технического университета Цюриха и МФТИ.

Ранее группа под руководством ведущего научного сотрудника Лаборатории квантовой теории информации МФТИ и Института теоретической физики имени Л. Д. Ландау РАН Гордея Лесовика, пытаясь доказать справедливость второго закона термодинамики для квантовых систем, обнаружила, что в квантовом мире он может при определённых условиях нарушаться.

Оказалось, что в квантовых системах относительно небольшого, но макроскопического размера - сантиметры и даже метры (в линейном измерении) - энтропия может снижаться, но этот процесс происходит без передачи тепловой энергии, за счёт явления квантовой запутанности.

В новой статье, опубликованной в журнале Physics Review A, Лебедев, Лесовик и их коллеги из Цюриха описали квантовую тепловую машину, КПД которой может достигать 100%. Она состоит из нескольких квантовых элементов - кубитов, которые могут находиться в состоянии квантовой запутанности друг с другом. Один из кубитов поглощает тепло, но в силу его квантовой природы эту энергию можно использовать только с вероятностью 50%. Чтобы извлекать энергию с вероятностью 100%, нужно снизить его энтропию, сделать это состояние «чистым» (в терминологии квантовой механики). Эту задачу решает вспомогательный чистый кубит, который обменивается своим квантовым состоянием с термализованным «грязным» состоянием рабочего кубита. Важно, что при этом передачи энергии между двумя кубитами не происходит.

«Можно сказать, что избыточная энтропия телепортируется из системы наружу во вспомогательный кубит, который играет роль квантового «демона Максвелла»», - говорит Лесовик.


После «вычищения» рабочего кубита оказывается, что собрать энергию с вероятностью 100% в одном кубите - это всё ещё непростая задача. Чтобы её решить, пришлось вдвое увеличить число рабочих элементов - кубитов.

«Финальная часть цикла - «демонские» (их, кстати, по смыслу можно назвать скорее «ангельскими» - за их очистительно-информационную деятельность) кубиты нужно почистить обычным образом, с затратой энергии, но это происходит вдали от системы. Важно подчеркнуть, что на этой стадии в объёме, заключающем в себе и систему и «демона/ангела», справедливость второго закона восстанавливается», - говорит Лесовик.

Сейчас группа занимается детальной разработкой установки для экспериментальной проверки своей теории на базе сверхпроводящих кубитов - трансмонов. опубликовано

Как известно, тепловой двигатель, работающий по замкнутому циклу, преобразует энергию из тепловой в механическую форму. При этом на одних этапах цикла двигателя к рабочему телу подводится энергия в тепловой форме, а на других - отводится в тепловой форме. Разница между подведенной и отведенной энергией в тепловой форме представляет собой результирующую работу W^ цикла. Чем больше тепловой энергии отводится от рабочего тела в цикле, тем меньше результирующая работа Жрез при одном и том же количестве подведенной тепловой энергии. КПД цикла снижается. Поэтому на практике стремятся уменьшить отвод энергии от рабочего тела в ходе циклического процесса.

Карно показал, что тепловой двигатель (машина) не может работать без подвода и отвода энергии в тепловой форме от рабочего тела. Тепловая машина работает между двумя источниками тепловой энергии - нагрева­телем и холодильником. Чтобы повысить эффективность такой тепловой машины, необходимо уменьшить отвод тепловой энергии в холодильник. Однако исключить вообще отвод тепловой энергии от рабочего тела в цикле теплового двигателя нельзя (на это указывает второй закон термодинами­ки).

Бели исключить отвод энергии в тепловой форме в холодильник, то КПД такого двигателя станет равным 1. В этом случае вся подведенная тепловая энергия Q\ должна быть преобразована в механическую форму W ^ = Qi [ Q 2 = 0]. Следовательно, можно отказаться от холодильника. В этом случае двигатель должен работать только с одним источником тепловой энергии - нагревателем (термостатом). Условная схема такого воображаемого двигателя (тепловой машины) приведена на рис. 8.44.

Так как температура термостата при отводе от него энергии в тепловой форме не изменяется, то тепловой двигатель (машина), представленный на рис. 8.44, можно назвать изотермическим . В этом двигателе тепловая энергия подводится к рабочему телу при постоянной температуре нагрева­теля (Ti = Idem ).

Идея построения такого двигателя (рис. 8.44) является заманчивой, но не осуществимой. Второй закон термодинамики указывает, что невозможна работа тепловой машины при наличии только одного источника теплоты (нагревателя).

Напомним, что «вечные» двигатели первого рода никогда не работали, так как противоречили первому закону термодинамики — всеобщему закону сохранения энергии. «Вечные» двигатели второго рода не противоречат первому закону термодинамики (они соответствуют его положениям). Сколько энергии подведено к термодинамической системе (в данном случае Qi), столько же и отведено от нее (W^ = Qi), учитывая эквивалентность теплоты и работы.

Формально двигатель (рис. 8.44) не соответствует определению вечного двигателя. «Вечный» двигатель первого рода в идеале должен работать вечно (не останавливаясь), если исключить возможные его поломки. «Веч­ный» двигатель второго рода даже в идеале не может работать вечно. Его название обусловлено другим обстоятельством. Если в качестве на­гревателя использовать воду, сосредоточенную на Земле, то двигатель (рис. 8.44) мог бы работать миллионы лет. При этом температура воды на Земле понизилась бы всего на несколько градусов. За 1700 лет работы такого двигателя температура воды на планете понизилась бы всего на 0,01 К. Для нас такой двигатель казался бы вечно работающим двигателем. Именно поэтому немецкий ученый В. Оствальд (1853-1932 гг.) назвал такой двигатель «вечным», понимая при этом его невозможность.

Несмотря на то, что изобретатели и ученые, работающие во многих областях науки и техники, знают ограничения, накладываемые вторым законом термодинамики, попытки создания вечного двигателя второго рода имеют место и сейчас. Поощряет их на такую деятельность тот факт, что если удастся обойти второй закон термодинамики, то это сразу решит проблему энергии на все века. И это тогда, когда мир стоит на грани истощения энергетических ресурсов.

Идеи вечных двигателей второго рода, как правило, появляются в периоды великих научных открытий, когда сами эти открытия еще не полностью осознаны и понятны.

Напрямую второй закон термодинамики обойти невозможно, а поэтому изобретатели стремятся создать такой двигатель на основе комбинации большого количества физических явлений. При такой комбинации различ­ных физических явлений, положенных в основу работы тепловой машины, можно и не заметить наличие всех процессов, оговоренных вторым законом термодинамики.

Рассмотрим несколько примеров таких двигателей.

На рис. 8.45 показа конструктивная схема «нуль-мотора» американского профессора Гэмджи. Замысел этого двигателя базируется на достижениях в области холодильной техники. Как известно, к концу XIX в. были в основном изучены свойства веществ в области низких и сверхнизких температур. Прототипом двигателя послужили аммиачная холодильная машина и установка для сжижения воздуха.

В специальном котле (рис. 8.45) находится жидкий аммиак. Котел находится в контакте с окружающей средой, а поэтому аммиак нагревается до температуры Тг = 300К (27° С). При этой температуре аммиак кипит (переходит в пар). По мере кипения аммиака давление на его жидкую фазу возрастает. При давлении 1МПа (10 атмосфер) и температуре Т\ = 300 К
кипение аммиака прекращается . Поэтому можно утверждать, что в котле будет находиться пар под давлением 1 МПа.

Таким образом, окружающая среда (воздух) является в рассматривае­мом двигателе верхним источником энергии в тепловой форме (Нагревате­лем] >. Этот факт соответствует второму закону термодинамики.

Из котла пар аммиака через впускной клапан направляется в рас­ширительную машину (детандер), где он расширяется. При расширении пара аммиака совершается работа над поршнем расширительной машины. Следовательно, энергия от пара передается поршню (окружающей среде), преобразуясь одновременно в механическую форму. В расширительной ма­шине происходит преобразование внутренней энергии рабочего тела (пара аммиака) в механическую энергию с одновременной отдачей ее поршню. Внутренняя энергия пара аммиака уменьшается, а поэтому уменьшается его внутренняя энергия. Внутренняя энергия пара зависит только от его температуры. Следовательно, в расширительной машине (детандере) температура пара аммиака уменьшается.

__ J __

\

Бели пар аммиака расширится до давления 0,1 МПа (1 атмосфера), то его температура понизится до 250К, т. е., станет равной - 23°С. При такой температуре аммиачный пар частично конденсируется (сжижается) в расширительной машине. Жидкий аммиак вместе с паром через выпускной клапан с помощью насоса откачивается в котел. Для привода насоса используется часть механической энергии, полученной в расширительной машине (детандере) при расширении паров аммиака. С помощью насоса давление жидкого аммиака повышается до 1МПа (10 атмосфер). Это необходимо для того, чтобы закачать аммиак в котел [в котле давление равно 1 МПа (10 атмосфер)]. В котле аммиак снова испаряется, нагреваясь от окружающей среды. Цикл должен повторяться. Таким образом, по мнению проф. Гэмджи, должен работать предложенный двигатель.

Как видим, двигатель Гэмджи должен работать по замкнутому циклу без отвода части подведенной тепловой энергии в окружающую среду. Здесь не следует путать факт охлаждения паров аммиака в детандере с отводом энергии в форме теплоты в окружающую среду. Приемник тепло­вой энергии в двигателе Гэмджи отсутствует. Двигатель должен работать, отдавая потребителю механическую энергию за вычетом небольшой ее части, затраченной на привод насоса.

Анализ показывает, что работа двигателя не противоречит положениям первого закона термодинамики - сколько энергии подведено к двигателю (в данном случае в тепловой форме), столько же ее отведено (в механиче­ской форме).

Проанализируем энтропийный процесс работы двигателя. На входе энтропия потока энергии равна: SBX = Q 0 . C / T 0 . C > 0.

На выходе энтропия потока энергии равна:

Действительно, на выходе получаем энергию в механической форме, являющейся высокоорганизованной.

В соответствии с вторым законом термодинамики изменение энтропии рабочего тела в ходе осуществления циклического процесса равно нулю. В данном случае изменение энтропии аммиака не равно нулю

Что противоречит второму закону термодинамики.

В идеальном случае на привод насоса потребуется столько механиче­ской энергии, сколько ее получается в расширительной машине. В этом случае отводить энергию от машины в тепловой форме не представляется возможным. Фактически машина работает по нулевому циклу, в котором полезная работа равна нулю. Таким образом, функциональные возможно­сти «нуль-мотора» Гэмджи соответствуют его названию.

Двигатель Гэмджи можно заставить работать, внеся в него конструк­тивные изменения в соответствии со вторым законом термодинамики. На рис. 8.46 показана конструктивная схема усовершенствованного двигателя. В конструкцию двигателя перед насосом введен конденсатор пара (теп-

Лообменник), отбирающий энергию от паров аммиака при температуре, меньшей температуры окружающей среды (Т < Т0.с). Естественно, что температура теплообменника (приемника теплоты) должна поддерживать­ся искусственно ниже температуры окружающей среды. В этом случае двигатель Гэмджи будет работать. Затраты энергии на привод насоса будут значительно уменьшены. Но вторую часть получаемой в расширительной машине работы пришлось бы затратить на работу специальной холодиль­ной машины, поддерживающей температуру холодильника (теплообменни­ка) ниже температуры окружающей среды.

Таким образом, введя специальный теплообменник, мы заставили ра­ботать двигатель Гэмджи. Но достигнутый результат снова оказывается Нулевым. Полезной работы двигатель не дает (он не может приводить в действие ни одного потребителя). Следовательно, двигатель, работающий с верхним источником теплоты при температуре окружающей среды, яв­ляется неработоспособным.

На рис. 8.47 показана схема так называемой «машины атмосферного тепла», предложенная проф. Шелестом, пионером тепловозостроения в России. Эта машина состоит из двух контуров. Первый контур включает компрессор К и турбину Т, соединенные валом. Турбина Т приводит в дей­ствие компрессор К. При вращении колеса компрессора К им засасывается воздух при параметрах окружающей среды (давлении рох и температуре Т0 .с). При сжатии воздух нагревается 7\ > Т0.с. В теплообменнике горячий воздух нагревает рабочее тело второго контура. Воздух при этом охла­ждается до температуры окружающей среды Г0.с. После теплообменника охлажденный сжатый воздух поступает в турбину Т, где совершает работу. При совершении работы он расширяется до давления окружающей среды Ро. с- При этом в результате совершения работы в турбине температура воз­духа еще понижается. Из турбины воздух выбрасывается в окружающую среду.

Явления, происходящие в первом контуре позволяют утверждать, что он работает как тепловой насос, перенося теплоту с нижнего уровня То с на верхний Ti > Тох.

Второй контур представляет собой тепловую машину, работающую по теплосиловому циклу. Во втором контуре в качестве рабочего тела исполь­зуется некоторое вещество, которое испаряется при низкой температуре. Поступая в теплообменник, это рабочее тело быстро испаряется, поглощая тепловую энергию в количестве Q. После теплообменника рабочее тело поступает в главную турбину Т2, где совершает полезную работу. При этом рабочее тело охлаждается. После турбины Т2 рабочее тело поступает в конденсатор, в котором переводится в жидкое состояние.

Турбина Т2 приводится в действие насос Я, который снова сжимает рабочее тело, подавая его в теплообменник и далее в турбину. Часть работы W, получаемой в главной турбине, используется для привода турбоком­прессора первого контура и электрического генератора Г. С генератором соединен обычный электродвигатель, который выполняет полезную рабо­ту W .

Таким образом, «машина атмосферного тепла» представляет комбина­цию двух тепловых машин, работающих по взаимно противоположным циклам. Первая машина (контур) работает по обратному циклу (тепловой насос), а вторая машина (контур) -по прямому циклу. Вторая машина полностью соответствует требованиям второго закона термодинамики. В ней есть расширительная машина (турбина Т2), рабочее тело и два ис­точника теплоты с различными температурами (верхний — теплообменник, нижний - конденсатор). Первая машина не соответствует требованиям вто­рого закона термодинамики, так как работает только с одним источником теплоты - окружающей средой. Второго (нижнего) источника теплоты здесь и не может быть, так как его температуру пришлось бы искусственно поддерживать ниже температуры окружающей среды. Это требует затраты механической энергии.

Следовательно, первая машина неработоспособна. Если первая машина не может работать, то и вторая также неработоспособна, так как исполь­зует энергию сжатого воздуха, поступающего в теплообменник из первой машины.

Таким образом, внешне машина атмосферного тепла является заманчи­вой идеей, а, по сути, она представляет собой бесполезную конструкцию.

Были предложены и другие конструкции «вечных» двигателей второго рода, которые «успешно» подтвердили свою неработоспособность. Вместе с тем, к анализу работы таких двигателей следует подходить очень тща­тельно. Как правило, их конструкция сложна, а поэтому не всегда известны потоки энергии в них. При этом источники энергии могут быть спрятаны. Может быть также и непонятным сам принцип действия такой машины. В результате этого может сложиться мнение, что рассматриваемая тепло­вая машина представляет собой один из вариантов «вечного» двигателя второго рода.

В технике используются тепловые машины, которые нам могут пока­заться в некотором смысле «вечными» двигателями второго рода. Как известно, биметаллическая пластинка при нагревании сгибается. Изгиб пластинки обусловлен тем, что материалы, из которых она изготовлена, имеют различный коэффициент линейного расширения. Тот материал, который имеет больший коэффициент линейного расширения, стремится и больше расшириться. Так как материалы скреплены между собой, то возникает изгиб пластинки (выпуклость образуется со стороны материала, имеющего больший коэффициент линейного расширения).

Если такую биметаллическую пластинку поместить в окружающую сре­ду, то она будет периодически изгибаться и выпрямляться. При повышении температуры окружающей среды она будет изгибаться, и при понижении - выпрямляться. Если к концу такой биметаллической пластинки подвесить груз, то он будет периодически подниматься и опускаться. Следовательно, пластинка будет совершать полезную работу. Она может, например, заво­дить пружину часов.

На первый взгляд кажется, что это все тот же «вечный» двигатель второго рода. Ведь он содержит только один источник теплоты - окру­жающую среду. На самом деле окружающая среда здесь периодически выступает в качестве то нагревателя (при повышении температуры), то охладителя (при понижении температуры). При этом для понижения температуры окружающей среды не используется механическая энергия, получаемая в результате изгиба биметаллической пластинки. Повышение и понижение температуры окружающей среды вызвано естественными процессами, протекающими в ней. Это эквивалентно приведению биметал­лической пластинки в контакт то с нагревателем, то с охладителем.

Такие работающие кажущиеся «вечными» двигатели называют псевдо­вечными двигателями второго рода.

Вечный двигатель первого рода

Вечный двигатель, перпетуум-мобиле (латинское perpetuum mobile переводится вечное движение) — воображаемая машина, которая, будучи раз пущена в ход, совершала бы работу неограниченно долгое время, не заимствуя энергии извне. Возможность работы такой машины неограниченное время означала бы получение энергии из ничего.
Идея вечного двигателя возникла в Европе, по-видимому, в XIII веке (хотя существуют свидетельства, что первый проект вечного двигателя предложил индиец Бхаскара в XII веке). До этого проекты вечных двигателей неизвестны. Их не было у греков и римлян, которые разработали множество эффективных механизмов и заложили основы научных подходов к изучению природы. Ученые предполагают, что дешевая и практически неограниченная рабочая сила в виде рабов тормозила в античности разработку дешевых источников энергии.
Почему люди так упорно хотели построить вечный двигатель?
В этом нет ничего удивительного. В XII-XIII веке начались крестовые походы и европейское общество пришло в движение. Стало быстрее развиваться ремесло и совершенствоваться машины, приводящие в движение механизмы. В основном это были водяные колеса и колеса, приводимые в движение животными (лошадьми, мулами, быками, ходившими по кругу). Вот и возникла идея придумать эффективную машину, приводимую в движение более дешевой энергией. Если энергия берется из ничего, то она ничего не стоит и это крайний частный случай дешевизны — даром.
Еще популярнее идея вечного двигателя стала в XVI-XVII веках, в эпоху перехода к машинному производству. Число известных проектов вечного двигателя перевалило за тысячу. Создать вечный двигатель мечтали не только малообразованные ремесленники, но и некоторые крупные ученые своего времени, так как тогда не существовало принципиального научного запрета на создание такого устройства.
Уже в XV-XVII веке прозорливые естествоиспытатели, такие как Леонардо да Винчи, Джироламо Кардано, Симон Стевин, Галилео Галилей сформулировали принцип: «Создать вечный двигатель невозможно». Симон Стевин был первым, кто на основе этого принципа вывел закон равновесия сил на наклонной плоскости, что привело его в конце концов к открытию закона сложения сил по правилу треугольника (сложение векторов).
К середине XVIII века, после многовековых попыток создать вечный двигатель, большинство ученых стали считать, что сделать это невозможно. Это был просто экспериментальный факт.
С 1775 года Французская академия наук отказалась рассматривать проекты вечного двигателя, хотя и в это время у французских академиков не было твердых научных оснований принципиально отрицать возможность черпать энергию из ничего.
Невозможность получения дополнительной работы из ничего была твердо обоснована лишь с созданием и утверждением как всеобщего и одного из самых фундаментальных законов природы «закона сохранения энергии».
Сначала Готфрид Лейбниц в 1686 году сформулировал закон сохранения механической энергии. А закон сохранения энергии как всеобщий закон природы сформулировали независимо Юлиус Майер (1845), Джеймс Джоуль (1843-50) и Герман Гельмгольц (1847).
Врач Майер и физиолог Гельмгольц сделали последний важный шаг. Они установили, что закон сохранения энергии справедлив для животных и растений. До этого существовало понятие «живая сила» и считалось, что для животных и растений законы физики могут не выполняться. Таким образом, закон сохранения энергии был первым принципом, установленным для всей познанной Вселенной.
Последним штрихом в обобщении закона сохранения энергии стала специальная теория относительности Альберта Эйнштейна (1905 г.). Он показал, что закон сохранения массы (был такой закон) — часть закона сохранения энергии. Энергия и масса эквивалентны по формуле Е = mс2, где с — скорость света.

Вечный двигатель второго рода

В XVIII веке широкое распространение получили паровые машины и механизмы. Часть физики, которая пыталась объяснить их работу и построить общие закономерности создания тепловых машин, стала называться термодинамикой. Закон сохранения энергии стали также именовать первым началом термодинамики. Вечные двигатели, принципы работы которых противоречили первому началу термодинамики, стали называть вечными двигателями первого рода.
Но существовала и другая общая идея вечного двигателя, которая не противоречила закону сохранения энергии. Было известно, что работа в двигателях совершается, когда горячее тело отдает тепло газу или пару и пар совершает работу, например, двигая поршень. Огромная тепловая энергия сосредоточена, допустим, в океане. Если отбирать у океана энергию за счет понижения его температуры, то этой энергии хватит на то, чтобы, например, поддерживать работу корабельного двигателя или создавать в море электростанции.
Однако оказалось, что никак не удается сделать так, чтобы энергия от более холодного тела перешла к более горячему. А ведь для создания вечного двигателя необходимо, чтобы при этом еще и совершалась работа.
В результате развития термодинамики, основываясь на работах Сади Карно, Рудольф Клаузиус показал, что, невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым. При этом невозможен не только непосредственный переход — его невозможно осуществить и с помощью машин или приборов без того, чтобы в природе не произошло еще каких-либо изменений.
Уильям Томсон (лорд Кельвин) сформулировал принцип невозможности вечного двигателя второго рода (1851 г.), поскольку в природе невозможны процессы, единственным следствием которых была бы механическая работа, произведённая за счет охлаждения теплового резервуара.
Когда была создана статистическая термодинамика, которая основывалась на молекулярных представлениях, второе начало термодинамики нашло свое объяснение. Оказалось, что переход тепла от холодного тела к более горячему в принципе возможен, но это уничтожающе маловероятное событие. А в природе реализуются наиболее вероятные события.

Вечный двигатель «третьего рода»

Научного термина «вечный двигатель третьего рода» не существует (это шутка), но существуют до сих пор изобретатели, которые хотят извлечь энергию из «ничего». Или почти из ничего. Теперь «ничего» получило название «физический вакуум», и они хотят извлекать неограниченное количество энергии из «физического вакуума». Их проекты по простоте и наивности не уступают проектам их предшественников, живших столетия назад. Новые вечные двигатели получили название «Вакуумно-энергетические установки»; изобретатели сообщают фантастические КПД подобных двигателей — 400%, 3000%! Их пытаются создать сейчас, к сожалению, в уважаемых конструкторских бюро, что говорит о недостаточной подготовке современных инженеров в области физики. Обсуждение того, почему так происходит, выходит за рамки нашего плаката. Но эти инженеры хотя бы добросовестно заблуждаются.

Продолжение следует

Есть "Вечный двигатель второго рода"!

...- Г-голубчики, - сказал Федор Симеонович озадаченно, разобравшись в почерках. - Это же п-проблема Бен Б-бецалая. К-калиостро же доказал, что она н-не имеет р-решения.

Мы сами знаем, что она не имеет решения, - сказал Хунта, немедленно ощетиниваясь. - Мы хотим знать, как ее решать.

К-как-то ты странно рассуждаешь, К-кристо... К-как же искать решение, к-когда его нет? Б-бесмыслица какая-то...

Извини, Теодор, но это ты странно рассуждаешь. Бессмыслица - искать решение, если оно и так есть. Речь идет о том, как поступать с задачей, которая решения не имеет...

А.Стругацкий, Б.Стругацкий. Понедельник начинается в субботу.

Уважаемые Господа!

Вечный двигатель второго рода это такой двигатель, который не подчиняется Второму закону термодинамики.

В 1824 году С. Карно в своем сочинении «Размышления о движущей силе огня и о машинах, способных развивать эту силу» высказал мысль, что «тепловая машина не поглощает тепло, превращая ее в работу, а передает его холодному телу». В. Томпсон (лорд Кельвин), Р. Клаузиус, М. Планк возвели эту мысль в ранг закона. Современная трактовка Второго закона термодинамики звучит так: "Для перевода теплоты в работу необходим источник тепла и охладитель более низкой температуры". Того, кто осмеливался противоречить этому закону, называют изобретателями вечного двигателя второго рода.

Этот закон распространяется на тепловые электростанции. Наверное, все знают, что для выработки электроэнергии надо подвести тепло к воде в парогенераторе «ПГ» (см. Рис. 1), затем испарить ее и поднять давление пара. После этого пар с высоким давлением поступает в турбину «Т», вращает ее ротор вместе с ротором генератора «Г», а последний вырабатывает электроэнергию. После турбины, пар с низким давлением поступает в конденсатор «К» (охладитель) и там конденсируется - пар переходит в состояние жидкости (воды). После конденсатора, вода снова подается в парогенератор конденсатным насосом «КН».

При отводе тепла из конденсатора, в окружающую среду (реки, озера, моря) выбрасывается более половины подведенного тепла. Вот как мы греем "матушку Землю!

Выброс тепла в конденсаторе делается для того, чтобы уменьшить затраты энергии на поднятие давления пара. Для поднятия давления водяного пара с низким давлением, сначала его надо перевести в состояние жидкости (сконденсировать), поднять давление воды в насосах, подать в парогенератор, снова подвести к воде тепло для ее испарения и поднятия давления пара.

Я решил придумать что-нибудь для увеличения КПД цикла и улучшения экологической обстановки в местах размещения ГРЭС, ТЭЦ, АЭС.

Для изобретательства в теплоэнергетике надо знать азы термодинамики.

При нормальных условиях для выкипания воды, сначала надо нагреть ее до 100°С, затем подвести тепло для испарения. Испарение происходит при отрыве молекул воды с поверхности кипения. О распределении внутренних энергий в процессе кипения можно судить по Рис.2.

Здесь, I" - теплота идущая на нагрев воды до температуры кипения.

R - теплота идущая на испарение кипящей воды - теплота парообразования

При дальнейшем подводе тепла к пару, идет его перегрев – увеличение внутренней энергии с повышением температуры.

Теплота парообразования R состоит из теплоты разъединения молекул U и теплоты расширения L. При нормальных условиях теплота расширения L в 12,5 раз меньше теплоты разъединения U.

В процессе получения электроэнергии, теплота разъединения U выбрасывается в окружающую среду, а теплота расширения L участвует в полезной работе. Вот из-за неё то и вся драка пойдет.

Я подумал, все дело в состоянии массы - жидкое оно, или газообразное. Как это так? Для поднятия давления в жидкости надо затратить энергии во много раз меньше, чем для поднятия того же давления в паре? Значит надо найти другой, менее энергоемкий способ поднятия давления пара, или найти другой способ перевода пара в состояние жидкости (воды).

Известно, что "Удавалось перегревать воду при нормальных условиях на десятки градусов. Однако, в конце концов, такая вода вскипает. Кипение происходит крайне бурно, напоминая взрыв".

Я задал себе задачу успокоить перегретую воду - найти способ ее успокаивания (чтобы не взрывалась). Потом создать такие условия, когда внутренняя энергия перегретой воды была бы больше, чем внутренняя энергия пара при том же давлении сжатия.

Моя профессия - инженер теплоэнергетик, специализация - виброналадка вращающегося оборудования. Т.е. в голове всякие ускорения, центробежные силы и др. Поэтому, возник вопрос, как влияют центробежные силы инерции на процесс кипения жидкости?

Представьте, что Вас послали на Солнце в барокамере и термостате. На Солнце вес увеличивается в 30 раз и составит для человека 2 - 3 тонны. Ну и как в этих условиях бегать, прыгать? Короче, летальный исход от веса! Ну а молекулы воды другое дело. К ним можно подвести много тепла и тогда произойдет их отрыв (прыжок) с поверхности. Но с увеличением тепла в жидкой массе должна расти ее температура кипения. Т.е. воду для кипения надо будет нагревать не до 100°С, а до большей температуры.

Имитировать увеличение веса в молекулах воды можно во вращающемся цилиндре (см. Рис. 3). Вес молекул увеличится от возрастания центробежных сил в массе.

Я провел опыт по испарению воды во вращающемся цилиндре. При увеличении центробежных сил, от увеличения радиуса поверхности кипения возрастала температура кипения. В первом приближении определил увеличение внутренней энергии, при увеличении радиуса кипения на один сантиметр.

Получилось, что температура кипения чистой воды увеличивается не только от увеличения давления сжатия, но и от увеличения центробежных сил в молекулах на вращающейся поверхности. Этот эффект был также открыт в 1971 году в Америке.

Согласно данных измерений в опыте, я просчитал, что для того, чтобы внутренняя энергия кипящей воды была равна внутренней энергии пара, при нормальных условиях, надо иметь радиус внутренней вращающейся поверхности воды в цилиндре 1,9 метра. Т.о. если этот радиус будет больше, то пар с нормальными параметрами будет переходить в состояние жидкости на этой поверхности (силы не хватит оторваться от поверхности "Солнца"). Процесс перехода пара в состояние жидкости на вращающейся поверхности назван «Коллапсация пара".

Расчеты показали, что энергия массы, вращающейся с частотой n = 3000 об/мин на поверхности с радиусом 1,9 метра близка к энергии движения массы со звуковой скоростью и к теплоте расширения L.

Материалы по опытам со сверхзвуковыми движениями потоков газов говорят об одной физической природе скачков уплотнения на острие крыла и переходом пара в состояние жидкости на вращающейся поверхности. Причем, затрачиваемые энергии в процессах перехода пара в состояние жидкости равны теплоте расширения пара L. Исходя из этого, для уточнения, мной выполнен расчет радиуса коллапсации пара для компенсации теплоты расширения. Этот радиус получился равным 1,05 метра.

Для подтверждения правильности рассуждений рассмотрен процесс эрозионного износа лопаток паровых турбин (вырывы металла жидкостью), работающих на сухом насыщенном паре при атмосферном давлении. Начало эрозионного износа лопаток начинается на радиусе примерно 1 метр. Эти наблюдения подтверждают также специалисты МЭИ. Значит, рассуждения и расчеты радиуса коллапсации выполнены правильно.

Т.о. найден новый способ перевода пара в состояние жидкости!

Представьте, что в цилиндре Рис. 3 близко к наружному диаметру выполнены отверстия, а сам цилиндр помещен в корпус с напорным и всасывающим патрубками и системой уплотнений. Это будет центробежный насос с гидрозатвором в рабочем колесе. На Рис. 4 показан разрез насоса.

Работа насоса происходит следующим образом.

Пар с низким давлением поступает во всасывающий патрубок насоса. Попадая в отверстия барботажного цилиндра, он раскручивается и приобретает центробежную силу. Под действием этой силы пар направляется к поверхности гидрозатвора. Когда молекулы пара окажутся на этой поверхности, они перейдут в состояние перегретой жидкости. Центробежные силы не дадут им снова оторваться от поверхности. По радиусу гидрозатвора будет происходить приращение давления сжатия перегретой воды, как в обычном центробежном насосе. С большим давлением перегретая вода будет выходить из гидрозатвора рабочего колеса насоса. После выхода из рабочего колеса перегретая вода прекратит вращаться и снова перейдет в состояние пара, но с высоким давлением.

Энергия, затрачиваемая на коллапсацию единицы массы пара будет равна теплоте расширения L. Т.е. для повышения давления пара не надо будет выбрасывать теплоту разъединения U. Для перевода пара в состояние жидкости надо будет затрачивать работу равную теплоте расширения L. Т.к. теплота L в турбинах также используется для совершения работы, то тепло, используемое полезно, будет равно теплоте перегрева пара.

Схема работы паросиловой установки с применением двухфазного насоса будет выглядеть, как показано на Рис. 5.

Здесь: ПП – пароперегреватель; Т – турбина; Г – Генератор; ДН – Двухфазный насос.

Из двухфазного насоса, пар с высоким давлением поступает в пароперегреватель и там перегревается. Перегретый пар с высоким давлением из пароперегревателя поступает на турбину. В турбине тепловая энергия пара переходит в энергию вращения ротора турбины. Последний вращает ротор генератора, который вырабатывает электроэнергию. После турбины, пар низкого давления поступает в двухфазный насос. В двухфазном насосе происходит повышение давления пара низкого давления до давления пара высокого давления. Далее цикл повторяется.

Утверждение закона сохранения энергии - первого закона термодинамики - сделало попытки создать perpetuum mobime -1 абсолютно безнадежным занятием. И хотя они все еще продолжаются, «генеральное направление» мыслей создателей вечных двигателей изменилось. Новые варианты вечных двигателей рождаются уже в полном согласии с первым началом термодинамики; сколько энергии поступает в такой двигатель, ровно столько же и выходит. Эти двигатели даже называют иначе, чтобы избежать термина «вечный двигатель»

Тем не менее, несмотря на согласие с первым законом и маскирующие названия, эти двигатели остаются типичными perpetuum mobile и сохраняют их основной признак - абсолютную невозможность осуществления

Дело в том, что соблюдение какого-либо одного, даже очень важного закона вовсе не гарантирует возможность того или иного явления. Каждое из них определяется несколькими законами. Поэтому оно может происходить только в том случае, если не нарушает ни одного из тех законов, которые к нему относятся

В частности, для любых тепловых машин соблюдение первого начала термодинамики необходимо, но не достаточно. Существует еще и второе начало термодинамики, соблюдение требований которого столь же обязательно. Новые вечные двигатели, о которых пойдет речь ниже, относятся именно к тепловым машинам; они могли бы работать, только нарушая ограничения, полагаемые вторым законом термодинамики. Поэтому такой двигатель и был назван «вечный двигатель второго рода». Впервые этот термин ввел известный физико-химик В.Оствальд в 1982 году по аналогии со старым классическим perpetuum mobile -1

Кто придумал первый perpetuum mobile -2, установить трудно; во всяком случае, они появились не ранее последней четверти XIX века. В принципах вечных двигателей второго рода нет такого разнообразия, как в принципах создания вечного двигателя первого рода. Основная идея perpetuum mobile -2 едина для всех самых разнообразных проектов

Ведущий идеолог данного направления профессор В.К.Ощепков ставит задачу таким образом: «…отыскать такие процессы, которые позволили бы осуществить прямое и непосредственное преобразование тепловой энергии окружающего пространства в энергию электрическую. В этом я вижу величайшую проблему современности». И далее: «…открытие способов искусственного сосредоточения, концентрации рассеянной энергии с целью придания ей вновь активных форм будет таким открытием в истории развития материальной культуры человечества, что … можно сравнить разве только с открытием первобытным человеком способов искусственного добывания огня»

Если вникнуть в существо перспектив рассматриваемой идеи, то она сводится к тому, что рассеянная «тепловая энергия» окружающего пространства «извлекается», концентрируется и превращается в электрическую энергию, способную производить работу. Нарушения первого закона термодинамики здесь нет. Сколько энергии забирается из «окружающего пространства», столько и превращается в электроэнергию

Такая идея, действительно, чрезвычайно заманчива. «Концентрированная» энергия использовалась бы для нужд человечества, «рассеивалась» бы при этом в окружающей среде, а затем ее можно было бы снова «концентрировать» и пускать в дело. В энергетике человечества осуществился бы вечный круговорот энергии, который позволил бы сразу «убить двух зайцев» - снять как проблему поиска источников энергии, так и проблему теплового, химического и радиационного загрязнения окружающей природы

Чтобы проанализировать все стороны этой грандиозной идеи научно, нужно прежде всего уточнить используемую ее авторами терминологию, перевести ее на современный научный язык

Прежде всего отметим, что «окружающее пространство» само по себе энергии не содержит. Энергия содержится только в материальной среде (веществе или поле), заполняющей это пространство. Поэтому правильно было бы говорить «окружающая среда». Но и такая формулировка тоже не годится. Термин «окружающая среда» имеет разное содержание в зависимости от того, как его использовать. Здесь могут быть два случая

В первом случае под окружающей средой понимают все то, что находится вне границ системы (в данном случае двигателя). Это означает, что в окружающую среду входят по крайней мере атмосфера, гидросфера и литосфера земли, в которых существуют разности давления, температур и химического состава. Следовательно, она включает и запасы топлива, гидроэнергетические ресурсы и так далее. Другими словами в окружающей среде, определяемой таким образом, нет равновесия

Используя неравновесность в окружающей среде, человек всегда получал необходимую ему энергию как в форме теплоты, так и в форме работы. Если бы эта среда была равновесной, то есть вся имела бы один и тот же усредненный и равномерно распределенный химический состав, одну и ту же температуру, одно давление, один уровень воды, одинаковый везде электрический заряд и так далее, то все кругом было бы мертво и неподвижно. Именно неравновесность, наличие разности потенциалов во внешней среде и определяют возможность существования всей энергетики

При такой трактовке термина «окружающая среда» извлечение из нее энергии и превращение ее в работу или электроэнергию давно известно. Ничего нового в таких процессах нет: так всегда и делалось

Во втором случае под окружающей средой понимают только равновесную часть всего окружения системы. Основанием для введения такого более узкого, локального понятия служит то, что в окружении системы всегда имеется в практически неограниченном количестве некая среда, имеющая одни и те же температуру, давление и химический состав. Примером такой среды может служить, например, вода у поверхности океанов, морей, других больших водоемов или атмосферный воздух у поверхности земли. Существующие в них некоторые небольшие разности потенциалов в круг рассмотрения не входят

Такая равновесная окружающая среда, как показывает многовековой опыт человечества, не может служить источником энергии, поскольку никаких разностей потенциалов, неравновесностей, которые можно было бы использовать, в ней нет. Она ведет себя, как та «мертвая вода» без разницы уровней, о которой писал Леонардо да Винчи

Наконец, о первой части выражения «тепловая энергия окружающего пространства». Поскольку теплота есть энергия только в процессе перехода, говорить о «тепловой энергии», да еще «содержащейся» в окружающей среде, некорректно. Энергия теплового движения частиц составляет часть внутренней энергии тела, причем выделить ее «в чистом виде» практически невозможно. Поэтому в науке пользуются термином «внутренняя энергия»

Разберем понятия «концентрация» и соответственно «рассеяние» энергии

Концентрация - это понятие, связанное с сосредоточением чего-либо в определенном месте (объеме или поверхности). Применимо к энергии это соответствует ее количеству, приходящемуся на единицу объема или поверхности (Дж/м 3 или Дж/м 2). Если это количество растет, говорят о концентрировании энергии, если падает - о ее рассеянии

Сторонники perpetuum mobile -2 используют этот термин в смысле, не имеющим отношения к действительному ее содержанию. Они называют «концентрированной» энергией электрическую энергию и работу, а «рассеянной» - внутреннюю энергию тел и теплоту. Однако разница в них не в концентрации, а в степени упорядоченности, организованности движения частиц. Именно эта упорядоченность и определяет в основном качественную сторону энергии, ее работоспособность

Теперь, после уточнения всех терминов, мы можем вернуться к принципиальным основам perpetuum mobile -2. Становится очевидным, что его идея основана на получении работы из равновесной окружающей среды путем использования той части ее внутренней энергии, которая связана с хаотическим тепловым движением молекул

В.К.Ощепков назвал такой процесс ученым термином «энергетическая инверсия» (инверсия - от лат. inversio - «перестановка», «переворачивание»). Другими словами, это - обратное превращение части внутренней энергии равновесной окружающей среды в электроэнергию или работу

Именно такой процесс запрещен вторым началом термодинамики. Поэтому, чтобы доказать возможность создания вечного двигателя второго рода, нужно неизбежно опрокинуть или обойти «стоящий на дороге» второй закон термодинамики