Молекулярная масса аргона равна. Молярная масса аргона

Пересчитать, узнать объемный вес: физические свойства. Величины. Количество кг в 1 литре, кг/литр. Для расчетов использовались справочные данные из: Теперь вы можете узнать сколько весит при помощи такого инструмента, как: Погрешность измерений. -
Сколько кг вес 1 литра аргона - литровая банка. Используем справочные данные по плотности и удельному весу, рассчитывая по формуле получаем объемный вес. 0.0017839 Справочник физических свойств, ГОСТ, ТУ. Литровая банка. до 5% -
Замечания, интересные пояснения к вопросу "сколько кг весит литровый объем" и некоторая дополнительная информация к справочным данным по физическим свойствам.

Достаточно часто на практике мы сталкиваемся с ситуациями, когда нам нужно узнать какой вес 1 литра аргона. Обычно, такая информация используется для пересчетов массы на другие объемы, для тех емкостей, литраж которых известен заранее: банки (0.5, 1, 2, 3 л), бутылки (250 мм, 0.5 мл, 0.75, 1, 1.5, 2, 5 л), стаканы (200 мл, 250 мл), канистры (5, 10, 15, 20, 25 л), фляжки (0.25, 0.5, 0.75, 0.8, 1л) ведра (3, 5, 7, 8, 10, 12, 15, 18, 20, 25, 30 л), фляги и бидоны (3, 5, 10, 22, 25, 30, 40, 45, 50, 51, 200 л), бочки (30, 50, 60, 65, 75, 127, 160, 200, 205, 227, 900 л), баки, баллоны, цистерны (0.8 м3, 25.2, 26, 28.9, 30.24, 32.68, 32.7, 38.5, 38.7, 40, 44.54, 44.8, 46, 46.11, 46.86, 50, 54, 54.4, 54.07, 55.2, 61, 61.17, 62.39, 63.7, 65.2, 73, 73.1, 73.17, 75.5, 62.36, 88.6 м3, 99.2, 101.57, 140, 159, 161.5 м3). В принципе, даже кастрюли и котелки можно оценить по массе, если известно, сколько весит один литр аргона. Для бытового применения и каких-то самостоятельных работ, вопрос может задаваться иначе, когда спрашивают не вес 1 литра аргона, а сколько весит литровая банка (баночка). Обычно интересует, сколько грамм или килограмм в литровой банке. Найти такие данные: сколько весит, в интернете не так просто, как кажется. Дело в том, что общепринятый формат подачи материала в любых справочниках, таблицах, ТУ и ГОСТе, сводится к приведению только плотности и удельного веса аргона. При этом указанными единицами измерения являются один м3, куб, кубометр или кубический метр. Реже 1 см3. А нас интересует, сколько весит литровый объем. Что приводит к необходимости дополнительного пересчета кубических метров (м3) в литры. Это неудобно, хотя и возможно сделать правильный пересчет кубов в количество литров самостоятельно. Пользуясь соотношением: 1 м3 = 1000 л. Для удобства посетителей сайта, мы самостоятельно сделали перерасчеты и указали, сколько весит один литр аргона в таблице 1. Зная вес 1 литра аргона, вы не только определяете массу литровой банки, но и легко можете рассчитать, сколько весит любая другая емкость, для которой известен литраж. При этом, нужно понимать нежелательность и невозможность точных оценок сделанных на основании подобных пересчетов для больших емкостей со значительным объемом литража. Дело в том, что при таких методиках расчета возникает большая погрешность, приемлемая только в смысле приблизительной оценки массы. Поэтому, профессионалы пользуются специальными таблицами, в которых указано, сколько весит, например автомобильная или железнодорожная цистерна, бочка. С другой стороны, для прикладных и бытовых целей, для домашних условий, метод расчета исходя из литрового объема, вполне пригоден и может применяться на практике. В тех случаях, когда нам нужны более точные данные, например: при лабораторных исследованиях, для проведения экспертизы, для отладки производственного процесса, наладки оборудования и так далее. Вес 1 литра аргона лучше определять экспериментальным путем, через взвешивание на точных весах, по специальной методике, а не пользоваться справочными, теоретическими, табличными средними данными о плотности и его удельном весе.

Какие свойства кислорода. Вес 1 м3 кислорода. Вес жидкого кислорода. Способы получения кислорода. 4.20 /5 (84.00%) проголосовало 5


Какие свойства кислорода. Вес 1 м 3 кислорода. Вес жидкого кислорода. Способы получения кислорода.

При нормальном давлении и нормальной температуре кислород – прозрачный газ без цвета, запаха и вкуса. Он не горит, но активно поддерживает горение.

Вес 1 м 3 кислорода.

При 0° G и давлении 760 мм рт. ст 1 м 3 кислорода весит 1,43 кг . При охлаждении до температуры -186° и нормальном атмосферном давлении кислород превращается в прозрачную легко испаряющуюся жидкость голубоватого цвета

Вес жидкого кислорода.

Один литр жидкого кислорода весит 1,13 кг и при испарении дает около 800 л газа.

Кислород энергично соединяется почти со всеми элементами, за исключением благородных металлов (золота, серебра, платины и др.), редких газов (гелия, аргона, неона и др.) и фтора.

Сжатый кислород (свыше 30 кг/см 2) при соприкосновении с маслами и жирами мгновенно их окисляет с выделением большого количества тепла, которое способствует воспламенению масла или жира и может привести к взрыву.

Особенно активно соединяются с кислородом металлы. На их свойстве сгорать в струе чистого кислорода и основан процесс кислородной резки.

Способы получения кислорода.

Существует несколько способов получения кислорода. Наиболее распространенным и дешевым является способ получения кислорода из атмосферного воздуха методом глубокого охлаждения. Атмосферный воздух служит основным источником получения технического кислорода.

Воздух содержит 78% азота, 21 % кислорода и 1 % аргона и других примесей.

Согласно ГОСТ 5583-58 газообразный технический кислород, применяемый для газопламенной обработки металлов и для медицинских целей, должен иметь чистоту: 99,5% (высший сорт), 99,2% (1-й сорт) и 98,5% (2-й сорт). Примесь в количестве 0,5-1,5% в основном состоит из азота и аргона.

Для получения кислорода существуют специальные установки, в которых очищенный и осушенный воздух путем сжатия и охлаждения превращается в жидкость.

Жидкий воздух разделяется на кислород и азот. Способ разделения основан на том, что жидкие азот и кислород кипят и испаряются при различной температуре: азот при температуре -196°С, а кислород при температуре -183°С. При превращении воздуха в жидкость и последующем испарении первым начинает испаряться азот, имеющий более низкую температуру кипения, чем кислород.

При кислородной резке используется газообразный кислород. Поэтому жидкий кислород при помощи специальных аппаратов - газификаторов - превращается в газообразное состояние и в таком виде поступает к месту потребления по газопроводу или в специальных баллонах.

Кислород может подаваться к потребителям и в жидком состоянии. Транспортирование жидкого кислорода намного дешевле и безопаснее по сравнению с газообразным. Жидкий кислород хранится и транспортируется в специальных сосудах – танках.

Статья оказалась Вам полезной?! Не забудь поделится с друзьями в социальных сетях!!!


Арго́н / Argon (Ar), 18

Атомная масса
(молярная масса)

39,948(1) а. е. м. (г/моль)

Электронная конфигурация Радиус атома Химические свойства Ковалентный радиус Радиус иона Электроотрицательность

4,3 (шкала Полинга)

Электродный потенциал Степени окисления Энергия ионизации
(первый электрон)

1519,6(15,76) кДж/моль (эВ)

Термодинамические свойства простого вещества Плотность (при н. у.)

1,784·10−3 г/см³

Плотность при т. п. Температура плавления

83,8 К (-189,35 °C)

Температура кипения

87,3 К (-185,85 °C)

Уд. теплота плавления

7,05 ккал/кг кДж/моль

Уд. теплота испарения

6,45 кДж/моль кДж/моль

Молярная теплоёмкость

20,79 Дж/(K·моль)

Молярный объём

24,2 см³/моль

Кристаллическая решётка простого вещества Структура решётки

кубическая гранецентрированая

Параметры решётки Температура Дебая Прочие характеристики Теплопроводность

(300 K) 0,0164 вт/м×град Вт/(м·К)

18 Аргон
Ar 39,948
3s23p6
О советском/российском предприятии см. НИИ «Аргон».

Арго́н - элемент 18-й группы периодической таблицы химических элементов (по устаревшей классификации - элемент главной подгруппы VIII группы) третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) - 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440-37-1) - инертный одноатомный газ без цвета, вкуса и запаха.

  • 1 История
    • 1.1 Происхождение названия
  • 2 Распространённость
    • 2.1 Во Вселенной
    • 2.2 Распространение в природе
  • 3 Определение
  • 4 Физические свойства
  • 5 Химические свойства
  • 6 Изотопы
  • 7 Получение
  • 8 Применение
  • 9 Биологическая роль
  • 10 Примечания
  • 11 Ссылки

История

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых оксидов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекратилось, но после связывания оставшегося кислорода остался пузырек газа, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго - 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота.

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос.

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы).

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошёл своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней.

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа.

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома - до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод - раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество.

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще - до той поры не было известно ни одного настолько инертного вещества.

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких - целую плеяду инертных газов.

7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %). Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да ещё и в количестве целого процента! считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон.

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов - Нобелевскую премию по химии.

Происхождение названия

По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός - ленивый, медленный, неактивный). Это название подчеркивало важнейшее свойство элемента - его химическую неактивность.

Распространённость

Во Вселенной

Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения.

Распространение в природе

Аргон - третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объёму и 1,288 % по массе, его запасы в атмосфере оцениваются в 4·1014 т. Аргон - самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объёме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона).

Определение

Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа, основные характеристические линии - 434,80 и 811,53 нм. При количественном определении сопутствующие газы (O2, N2, H2, CO2) связываются специфичными реагентами (Ca, Cu, MnO, CuO, NaOH) или отделяются с помощью поглотителей (например, водных растворов органических и неорганических сульфатов). Отделение от других инертных газов основано на различной адсорбируемости их активным углём. Используются методы анализа, основанные на измерении различных физических свойств (плотности, теплопроводности и др.), а также масс-спектрометрические и хроматографические методы анализа.

Физические свойства

Аргон - одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде. Плотность при нормальных условиях составляет 1,7839 кг/м3

Химические свойства

Пока известно достоверно только 1 химическое соединение аргона - гидрофторид аргона, которое существует только при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние (как и абсолютно инертные хим. элементы неон и гелий). Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), аргон (как и гелий и неон) образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина, например, Ar 6H2O.

Изотопы

Основная статья: Изотопы аргона Спектр аргона

Аргон представлен в земной атмосфере тремя стабильными изотопами: 36Ar (0,337 %), 38Ar (0,063 %), 40Ar (99,600 %). Почти вся масса тяжёлого изотопа 40Ar возникла на Земле в результате распада радиоактивного изотопа калия 40K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:

Первый процесс (обычный β-распад) протекает в 88 % случаев и ведёт к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

Вероятные источники происхождения изотопов 36Ar и 38Ar - неустойчивые продукты спонтанного деления тяжёлых ядер, а также реакции захвата нейтронов и альфа-частиц ядрами лёгких элементов, содержащихся в урано-ториевых минералах.

Подавляющая часть космического аргона состоит из изотопов 36Ar и 38Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40Ar, они получили изотопный состав, очень близкий к составу космического аргона.

Получение

В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9 °C (88 Кельвин) аргон конденсируется, при −189,4 °C (83 по Кельвину) - кристаллизуется.

Ввиду близости температур кипения аргона 88 К и кислорода 90 К разделение этих фракций ректификационным способом затруднительно. Аргон считается посторонней примесью, допускаемой только в техническом кислороде чистотой 96 %.

Применение

Заполненная аргоном и парами ртути газоразрядная трубка

Ниже перечислены области применения аргона:

  • в аргоновых лазерах;
  • в лампах накаливания и при заполнении внутреннего пространства стеклопакетов;
  • в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов (например, титана), так и неметаллов;
  • в качестве плазмаобразователя в плазматронах при сварке и резке;
  • в пищевой промышленности аргон зарегистрирован в качестве пищевой добавки E938 , в качестве пропеллента и упаковочного газа;
  • в качестве огнетушащего вещества в газовых установках пожаротушения;
  • в медицине во время операций для очистки воздуха и разрезов, так как аргон не образует химических соединений при комнатной температуре;
  • в качестве составной части атмосферы эксперимента Марс-500 с целью снижения уровня кислорода для предотвращения пожара на борту космического корабля при путешествии на Марс;
  • из-за низкой теплопроводности аргон применяется в дайвинге для поддува сухих гидрокостюмов, однако есть ряд недостатков, например, высокая цена газа (кроме этого, нужна отдельная система для аргона);
  • в химическом синтезе для создания инертной атмосферы при работе с нестабильными на воздухе соединениями.

Биологическая роль

Аргон не играет никакой заметной биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа.

Примечания

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. - 2013. - Vol. 85, no. 5. - P. 1047-1078. - DOI:10.1351/PAC-REP-13-03-02.
  2. 1 2 3 Size of argon in several environments (англ.). www.webelements.com. Проверено 6 августа 2009.
  3. 1 2 3 4 Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. - Москва: Советская энциклопедия, 1988. - Т. 1. - С. 194. - 623 с. - 100 000 экз.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 Финкельштейн Д.Н. Глава II. Открытие инертных газов и периодический закон Менделеева // Инертные газы. - Изд. 2-е. - М.: Наука, 1979. - С. 30-38. - 200 с. - («Наука и технический прогресс»). - 19 000 экз.
  5. 1 2 3 4 5 6 7 8 Фастовский В.Г., Ровинский А.Е., Петровский Ю.В. Глава первая. Открытие. Происхождение. Распространенность. Применение // Инертные газы. - Изд. 2-е. - М.: Атомиздат, 1972. - С. 3-13. - 352 с. - 2400 экз.
  6. Mary Elvira Weeks. XVIII. The inert gases // Discovery of the elements: collected reprints of a series of articles published in the Journal of Chemical Education. - 3rd ed. rev. - Kila, MT: Kessinger Publishing, 2003. - P. 286-288. - 380 p. - ISBN 0766138720 9780766138728.
  7. Argon: geological information (англ.). www.webelements.com. Проверено 9 августа 2009.
  8. 1 2 3 4 5 6 Финкельштейн Д.Н. Глава IV. Инертные газы на Земле и в космосе // Инертные газы. - Изд. 2-е. - М.: Наука, 1979. - С. 76-110. - 200 с. - («Наука и технический прогресс»). - 19 000 экз.
  9. Снежана Шабанова. Инертные опыты на людях. Проект «Марс-500» (16 апреля 2008). Проверено 26 февраля 2012. Архивировано из первоисточника 28 мая 2012.
  10. Павлов Б.Н. Проблема защиты человека в экстремальных условиях гипербарической среды обитания (рус.). www.argonavt.com (15 мая 2007). Проверено 6 августа 2009. Архивировано из первоисточника 21 августа 2011.
  11. Argon (Ar) - Chemical properties, Health and Environmental effects (англ.). www.lenntech.com. Проверено 6 августа 2009. Архивировано из первоисточника 22 августа 2011.

Ссылки

  • Аргон // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.). - СПб., 1890-1907. Статья Вуколова С. П.
  • CTPETT (Strutt), Дж. У., лорд Рэлей (Lord Rayleigh)
  • Аргон на Webelements
  • Аргон в Популярной библиотеке химических элементов
  • Химия инертных газов - библиотечка журнальных статей «Всякая всячина»
  • Термодинамические и переносные свойства аргона

Молярная масса любого вещества показывает отношение веса этой субстанции относительно количества молей. Иными словами, зная молярную массу можно знать, сколько будет весить один моль вещества. Каждый элемент и соединение нескольких элементов может отличаться по данному параметру. Эта характеристика необходима в тех случаях, когда нужно смешивать несколько веществ.

Аргон относится к одному из самых востребованных газов для современной сварки. Он выполняет защитную функцию, так как создает изоляционный слой для сварочной ванны. Когда используется сварочная проволока, то на ней зачастую не бывает обмазки. Чтобы кислород и другие элементы из атмосферы не влияли на сваривающийся металл, следует оградить их от всех негативных факторов. Свойства аргона обеспечивают лучшую защиту, на которую не способен ни один другой газ из этой области. Несмотря на относительно высокую стоимость, которой обладает материал, его применение оказывается вполне оправданным.

Молярная масса аргона составляет 40 грамм на 1 моль вещества. Это может пригодиться для вычисления количества закачки газа в пустой баллон. Ведь практически все емкости могут использоваться многократно. Чтобы узнать количество заправленного вещества, сначала взвешивают пустую емкость, а затем взвешивают ее уже после заполнения.

Область применения

Применение аргона в сварочной сфере за последние годы существенно расширилось. В основном, его используют для сложных и ответственных работ. Если для стандартных процедур соединения с обыкновенными металлами подходят и другие, менее дорогостоящие газы, то для сложно свариваемых изделий необходим только аргон. С его помощью можно сваривать алюминий, нержавеющую сталь различных марок, никель и прочие цветные металлы.

В строительной сфере, где нужно получить соединение максимально высокого качества, является основной. Свою популярность газ получил благодаря минимальному количеству брака, который получается во время сваривания. Тонкие трубопроводы, химическая и пищевая промышленность, машиностроение и прочие места, в которых находит применение сварка аргоном. В частной сфере используется все достаточно редко, так как себестоимость процесса оказывается довольно высокой и зачастую неоправданно. Если в быту возникает необходимость в применении аргона, то чаще всего люди обращаются за услугами специалистов.

Виды аргона

Существует три основные разновидности этого вещества, которые можно найти на современном рынке. В основном они отличаются по чистоте. Среди них выделяют следующие разновидности:

  • Высший сорт. В данной разновидности содержание чистого газа составляет 99,99%. Он пригоден для сварки металлов, обладающих высокой химической активностью, к примеру, титановых сплавов, нержавейки. Им сваривают несущие конструкции на стройках.
  • Первый сорт от высшего по чистоте имеет небольшое отклонение на 0,01%. Газом 99,98% можно сваривать алюминиевые сплавы с различными металлами. Это распространенный вариант для промышленности. Им можно работать со многими цветными металлами.
  • Второй сорт. Этот газ содержит 99,95% чистого аргона. Основная сфера применения – сварка жаропрочных сталей, алюминия и других металлов. Чистый аргон здесь редко применяется, так как это может привести к образованию пор. Чтобы этого не допустить, применяются дополнительные газы, такие как углекислый и кислород. Дополнительные элементы делают защиту более активной. В чистом виде аргон не дает полной защиты от влаги, включений и других загрязнений. Добавки вступают в реакции со всеми примесями и выжигают их или выталкивают на поверхность сварочной ванны.

Физические и химические свойства

Физические свойства аргона определяют его как одноатомный газ. Температура кипения составляет -185,9 градусов Цельсия при нормальном давлении. Она выше, чем у азота, но ниже, чем у кислорода. В 100 мл воды может раствориться до 3,3 мл газа. Плотность аргона при нормальных условиях 1,78 кг/м 3 . Молярная теплоемкость аргона составляет 20,79 Дж/(К*моль).

На данный момент известно только два химических соединения, в которых участвует газ. Первым является CU(Ar)O, а вторым — гидрофторид аргона. Оба варианта существуют только при низких температурах. Помимо этого, аргон способен образовывать эксимерные молекулы. У них неустойчивы нормальные состояния и устойчивые возбуждение состояния. Ученые считают, что очень нестойкое соединение с этим элементом Hg — Ar, которое получается в результате электрического разряда, это и есть валентное соединение. Предполагается, что можно получить также валентные соединения с кислородом и фтором. Они также будут отличаться неустойчивостью.

Электроотрицательность составляет 4,3 пункта по шкале Полинга. Степень окисления равняется нулю, также, как и электродный потенциал. Радиус иона достигает 154 пм, а ковалентный радиус – 106 пм. Энергия ионизации – 1519 кДж/моль

Обозначение

Формула аргона — Ar. В промышленности применяется аргон по ГОСТ 10157-79. Данный стандарт предназначается для жидкого и газообразного аргона, который получается из остаточных газов на аммиачных производствах и воздуха. Используется он в качестве защитной среды вовремя разки, сварки, плавке и прочих процедур с металлами. Стандарт выдвигает требования по изготовлению аргона для данной сферы. В итоге, полученное вещество должно соответствовать физико-химическим характеристикам, приведенным в самом ГОСТе.

Техника безопасности при работе с аргоном

Как и любой другой газ, аргон может оказаться очень опасным для здоровья человека, если не применять соответствующие меры безопасности. Чтобы минимизировать вероятность появления несчастных случаев, следует придерживаться следующих пунктов:

  • Во время работы с самим аргоном, следует применять шланговые противогазы или специальные изолирующие кислородные приборы, такие как баллоны;


  • Контакт с аргоном в жидком состоянии может привести к обморожению слизистых оболочек и кожи, так что для личной безопасности нужно применять спецодежду и защитные приспособления.

Во время работы с газом он может замещать кислород из атмосферы, что приводит к удушью, поэтому, нужно контролировать содержание кислорода дистанционными методами и не допускать его падение ниже 19%.»

Заключение

Несмотря на все преимущества использования газа, на практике он оказывается достаточно сложным в использовании. Основная проблема заключается в его вредности для здоровья человека. При постоянном контакте с ним возникают различные профессиональные болезни, которые проявляются более остро и активно, чем с другими газами. Таким образом, к проблемам безопасности связанными с хранением, добавляются еще и те, которые связаны с использованием.

Вторая сложность заключается в наличии соответствующей техники и умения работать. Ведь в каждом отдельном случае нужны свои навыки. Тем не менее, аргон остается наиболее востребованным веществом для обеспечения защиты во время соединения сложно свариваемых металлов и их сплавов.