Почему водород считается топливом будущего. Получение водорода как топлива будущего

С ейчас автопроизводители только и говорят о водородных разработках. Что же такое водород? Рассмотрим его немного подробнее.

Водород – первый элемент химической таблицы, его атомные вес равен 1. Это одно из самых распространенных веществ во вселенной, например из 100 атомов из которых состоит наша планета 17 – водород.

Водород — топливо будущего. Он имеет массу преимуществ по сравнению с другими видами топлива и имеет огромные перспективы его заменить. Он может быть использован абсолютно во всех отраслях современного производства и транспорта, даже газ, на котором готовиться пища, можно запросто, без каких либо переделок, заменить на водород.

Почему же водород не получил до сих пор широкого внедрения? Одна из проблем заключается в технологиях его получения. Пожалуй, единственным эффективным на данный момент способом его получения является электролитический способ – получение из вещества воздействием сильного электрического тока. Но на данный момент, большая часть электричества получается на теплоэлектростанциях, и поэтому возникает вопрос «А стоит ли игра свеч?». Но внедрение в производство электричества атомной энергии, энергии ветра и солнца, наверное, исправит эти проблемы.

Это вещество содержится практически во всех веществах, но больше всего его в воде. Как сказал писатель-фантаст Жюль Верн: «Вода – это уголь будущих веков». Это высказывание можно отнести к разряду предсказаний. Этого «угля» на поверхности больше чем чего либо еще, так что водородом мы будем обеспечены на долгие годы.

Об экологической чистоте водорода можно сказать только одно: при его сгорании и реакциях в топливных элементах образуется вода и ничего кроме воды.

Топливный элемент – пожалуй, самый эффективный способ получения энергии из водорода. Он работает по принципу батарейки: в топливном элементе имеется два электрода, между ними движется водород, происходит химическая реакция, на электродах появляется электрический ток, а вещество превращается в воду.

Поговорим о применении водорода в автомобилях. Идея замены обычного шумного и дымного бензина на абсолютно чистый газ возникла много лет назад, причем как в Европе так и в СССР. Но разработки в этой сфере велись с переменным успехом. А сейчас наступил апогей желания автопроизводителей получить независимость от нефти. Каждая, уважающая себя, компания имеет разработки в этой сфере.

Hydrogen в автомобиле может быть использован двумя способами: или сжигаться в двигателе внутреннего сгорания, или использоваться в топливных элементах. Основное количество новых концепткаров используют технологии топливных элементов. Но такие компании как Mazda и BMW пошли по второму пути и на это есть веские причины.

Автомобиль на топливных элементах – простая и чрезвычайно надежная система, но ее широкому распространению мешает инфраструктура. Например, если купить автомобиль на топливных элементах и использовать его в нашей стране, то на заправку придется ездить в Германию. А инженеры BMW пошли другим путем. Они построили автомобиль, использующий водород как горючее топливо, причем этот автомобиль может использовать как бензин, так и водород, как многие современные автомобили, оснащенные системой питания газ-бензин. Таким образом, если в вашем городе появилась хотя бы одна заправка, торгующая таким топливом – вы смело можете покупать водородный BMW Hydrogen 7.

Еще одной проблемой внедрения водорода — является его способ хранения. Вся сложность заключается в том, что атом водорода – самый маленький по размерам в химической таблице, а это значит, что он может проникать практически сквозь любое вещество. Это значит, что даже самые толстые стальные стенки будут медленно, но верно его пропускать. Эта проблема сейчас решается химиками.

Еще одна загвоздка – сам бак. 10 кг водорода могут заменить 40 кг бензина, но дело в том, 10 кг вещества занимают объем 8000 л.! А это целый олимпийский бассейн! Для уменьшения объема газа его нужно сжижать, а сжиженный водород надо безопасно и удобно хранить. Баки современных водородных автомобилей весят около 120 кг, что почти в два раза больше стандартных баков. Но и эта проблема скоро будет решена.

Преимуществ у водородного топлива намного больше чем недостатков. Водород сгорает намного эффективнее, не имеет вредных веществ выхлопе, не производит сажи, а это значительно увеличивает ресурс автомобилей. Водород – легко возобновляемое топливо, поэтому природа не получит практически никакого вреда.

Основным препятствием водородных технологий является инфраструктура. Очень немногие в мире заправки на данный момент готовы заправить автомобиль водородом, хотя серийные автомобили на водороде уже производит Honda и готовиться к производству BMW. В странах бывшего советского союза о водородном автомобиле вообще можно пока и не мечтать. До появления водородных заправок пройдет еще не один год, а может и десяток лет. Остается ждать, когда же и мы вместе со всем миром начнем спасать планету от экологической катастрофы.

Русские учёные придумали новое топливо, которое в 100 раз дешевле солярки, эффективней и проще в производстве… Вы думаете, кто-то этому обрадовался? Ничуть не бывало! Московские министры уже 3 года гоняют воздух по кабинетам – видимо ещё думают, как же лучше воплотить в жизнь прямой приказ о внедрении, поступивший им для исполнения. А те, кто отдал этот приказ, тоже получается не заинтересован в его скорейшей реализации, т.к. не мешают министрам безнаказанно саботировать решение жизненно важных для России и всего остального мира задач. Вот и думайте теперь: на кого в действительности работают эти министры?.. Юрий Иванович Краснов и Евгений Гурьевич Антонов из НПО им. Лавочкина придумали принципиально новый вид топлива на основе структурированной воды. Но, получается, их изобретение сегодняшним царькам не нужно! Оно даже мешает им гнать нас бегом к полному истощению углеводородных видов топлива и экологической катастрофе на некогда прекрасной планете Земля…

Водородо-кислородную смесь, как самую энергетически емкую, предлагал использовать в двигателях К.Э. Циолковский еще в 1903 году. Водород уже применяют как топливо: для автомобилей (от полуторки до Тойоты "Мирай"), реактивных самолётов (от «Хейнкель» до Ту-155), торпед (от GT 1200A до "Шквала"), ракет (от "Сатурна" до "Бурана"). Новые аспекты открывает получение металлического водорода и практическое применение реактора Росси. В недалеком будущем развитие технологий получения дешевого водорода из сероводорода Чёрного моря и непосредственно из источников дегазации Земли. Не смотря на противодействие нефтяного лобби, мы неумолимо вступаем в водородную эру!

Изменяя своё потребление - мы вместе изменяем Мир!

«Плюсы» и «минусы» водородного топлива

Водородное топливо имеет ряд особенностей:

  • Теплоотдача водорода на 250% выше, чем у топливно-воздушной смеси.
  • После сжигания водородной смеси на выходе образуется только пар.
  • Реакция воспламенения происходит быстрее, чем с другими видами топлива.
  • Благодаря детонационной устойчивости, удается поднять степень сжатия.
  • Хранение такого топлива происходит в жидкой или сжатой форме. В случае пробоя бака водород испаряется.
  • Нижний уровень пропорции газа для вхождения в реакцию с кислородом составляет 4%. Благодаря этой особенности, удается настроить режимы работы двигателя путем дозирования консистенции.
  • КПД водородного двигателя достигает 90 процентов. Для сравнения, дизельный мотор имеет коэффициент полезного действия на уровне 50%, а обычный ДВС - 35%.
  • Водород - летучий газ, поэтому он попадает в мельчайшие зазоры и полости. По этой причине немногие металлы способны перенести его разрушительное влияние.
  • Возникает меньший уровень шума при работе двигателя.

Первый двигатель на водороде заработал в СССР в 1941 году!

Будете удивлены, но первый двигатель обычной «полуторки» заработал на водороде в блокадном Ленинграде в сентябре 1941 года! Молодому младшему техник-лейтенанту Борису Щелищу, руководившему подъемом аэростата заграждения, было приказано в отсутствии бензина и электричества наладить работу лебёдок. Поскольку аэростаты заполнялись водородом, ему пришла мысль использовать его как топливо.

Во время опасных опытов сгорели два аэростата, взорвался газгольдер, сам Борис Исаакович получил контузию. После этого для безопасной эксплуатации воздушно-водородной «гремучей» смеси он придумал специальный водяной затвор, исключавший воспламенение при вспышке во всасывающей трубе двигателя. Когда все наконец получилось, приехали военачальники, убедились, что система работает нормально, и приказали за 10 дней перевести все аэростатные лебедки на новый вид горючего. В виду ограниченности ресурсов и времени, Щелищ остроумно применил для изготовления гидрозатвора списанные огнетушители. И задача подъёма аэростатов заграждения была успешно решена!

Бориса Исааковича наградили орденом "Красной звезды" и командировали в Москву, его опыт использовали в частях ПВО столицы - 300 двигателей перевели на «грязный водород», было оформлено авторское свидетельство №64209 на изобретение. Таким образом был обеспечен приоритет СССР в развитии энергетики будущего. В 1942 году необычный автомобиль демонстрировался на выставке техники, приспособленной к условиям блокады. При этом его двигатель проработал 200 часов без остановки в закрытом помещении. Отработанные газы - обыкновенный пар - не загрязняли воздух.

В 1979 году под научным руководством Шатрова Е.В. творческим коллективом работников НАМИ в составе Кузнецова В.М. Раменского А.Ю., Козлова Ю.А. был разработан и испытан опытный образец микроавтобуса РАФ, работающий на водороде и бензине.


Испытания РАФ 22031 (1979 г.)

Подводные аппараты на перекиси водорода

В 1938-1942 годах на Кильских верфях под руководством инженера Вальтера построили опытную лодку У-80 работавшую на перекиси водорода. На испытаниях корабль показал скорость полного подводного хода 28,1 узла. Полученные в результате разложения перекиси пары воды и кислорода использовали в качестве рабочего тела в турбине, после чего удаляли их за борт.


На рисунке условно показано устройство подводной лодки с двигателем на перекиси водорода

Всего немцы успели построить 11 лодок с ПГТУ.

После разгрома гитлеровской Германии в Англии, США, Швеции и СССР проводились работы с целью довести замысел Вальтера до практической реализации. Была построена советская подлодка (проект 617) с двигателем Вальтера в конструкторском бюро Антипина.

«Это была первая подводная лодка СССР, перешагнувшая 18-узловую величину подводной скорости: в течение 6 часов её подводная скорость составляла более 20 узлов! Корпус обеспечивал увеличение глубины погружения вдвое, то есть до глубины 200 метров. Но главным достоинством новой подводной лодки была её энергетическая установка, явившаяся удивительным по тем временам новшеством. И не случайно было посещение этой лодки академиками И. В. Курчатовым и А. П. Александровым - готовясь к созданию атомных подводных лодок, они не могли не познакомиться с первой в СССР подводной лодкой, имевшей турбинную установку. Впоследствии, многие конструктивные решения были заимствованы при разработке атомных энергетических установок…» - писал Александр Тыклин.


Знаменитая ПОДВОДНАЯ РАКЕТО-ТОРПЕДА ВА-111 «ШКВАЛ».

Тем временем успехи атомной энергетики позволили более удачно решить проблему мощных подводных двигателей. И эти идеи успешно применили в торпедных двигателях. Walter HWK 573. (работающий под водой двигатель первой в мире управляемой противокорабельной ракеты «воздух-поверхность» GT 1200A для поражения корабля ниже ватерлинии). Планирующая торпеда (УАБ) GT 1200A имела подводную скорость 230 км/ч, являясь прототипом высокоскоростной торпеды СССР «Шквал». Торпеда ДБТ принята на вооружение в декабре 1957 года, работала на перекиси водорода и развивала скорость 45 узлов при дальности хода до 18 км.

Газогенератором через кавитационную головку создается воздушный пузырь вокруг корпуса объекта (парогазовый пузырь) и, вследствие падения гидродинамического сопротивления (сопротивления воды) и применения реактивных двигателей, достигается требуемая подводная скорость движения (100 м/с), превышающая в разы скорость самой быстрой обычной торпеды. Для работы используется гидрореагирующее топливо (щелочные металлы при взаимодействии с водой выделяют водород).

Ту-155 на водороде установил 14 мировых рекордов!

Во время ВОВ Фирма «Хейнкель» создала под двигатель Вальтера Walter HWK-109-509 с тягой 2000 кгс., работавший на перекиси водорода, целую линейку реактивных самолетов.

Вполне успешный, но, к сожалению, не ставший серийным опыт создания «экологических» самолетов у России был уже в конце 80-х годов прошлого столетия. Миру был представлен Ту-155 (экспериментальная модель Ту-154), работающий на сжиженном водороде, а затем и на сжиженном природном газе. 15 апреля 1988 года самолет был впервые поднят в небо. Он установил 14 мировых рекордов и выполнил порядка ста рейсов. Однако затем проект ушел «на полку».

В конце 1990-х по заказу «Газпрома» был построен Ту-156 с двигателями на сжиженном газе и традиционном авиационном керосине. Этот самолет постигла та же участь, что и Ту-155. Представляете, насколько тяжело бороться с нефтяным лобби даже Газпрому!

Водородомобили

Автомобили с двигателями, работающими на водороде, делятся на несколько групп:

  • Транспортные средства, работающие на чистом водороде или топливно-воздушной смеси. Особенность таких двигателей заключается в чистом выхлопе и увеличении КПД до 90%.
  • Машины с гибридным двигателем. Они обладают экономичным мотором, способным работать на чистом водороде или бензиновой смеси. Такие транспортные средства соответствуют стандарту Евро-4.
  • Автомобили со встроенным электродвигателем, питающим водородный элемент на борту транспортного средства.

Главной особенностью водородомобилей является способ подачи горючего в камеру сгорания и его воспламенения.

Уже выпускаются серийно такие модели водородомобилей, как:

  • Ford Focus FCV;
  • Mazda RX-8 hydrogen;
  • Mercedes-Benz A-Class;
  • Honda FCX;
  • Toyota Mirai;
  • Автобусы MAN Lion City Bus и Ford E-450;
  • гибридный автомобиль на два вида топлива BMW Hydrogen 7.

Серийный водородомобиль Тойота "Мирай".

Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9,6 секунды и, самое главное, она способна проехать без дополнительной дозаправки 482 км

Концерн БМВ представил свой вариант автомобиля Hydrogen . Новая модель протестирована известными деятелями культуры, бизнесменами, политиками и другими популярными личностями. Испытания показали, что переход на новое топливо не влияет на комфортабельность, безопасность и динамику транспортного средства. При необходимости виды горючего можно переключать с одного на другой. Скорость Hydrogen7 - до 229 км/час.

Honda Clarity - автомобиль от концерна Хонда, который поражает запасом хода. Он составляет 589 км, чем не может похвастаться ни одно транспортное средство с низким уровнем выбросов. На дозаправку уходит от трех до пяти минут.

Home Energy Station III - это компактный блок, включающий в себя топливные элементы, баллон для хранения водорода и риформер природного газа, извлекающий H2 из газовой трубы.

Метан из бытовой сети превращается этим аппаратом в водород. А он - в электричество для дома. Мощность топливных элементов в Home Energy Station составляет 5 киловатт. Кроме того, встроенные баллоны с газом служат своеобразными аккумуляторами энергии. Станция использует этот водород при пике нагрузки на домашнюю электросеть. Вырабатывает 5 кВт электроэнергии и до 2 м3 водорода в час.

К недостаткам водородомобилей можно отнести:

  • громоздкость силовой установки при использовании топливных элементов, снижающей маневренность автомобиля;
  • пока высокую стоимость самих водородных элементов из-за входящих в их состав палладия или платины;
  • несовершенство конструкции и неопределённость в материале изготовления баков для топлива не позволяющих долго хранить водород;
  • отсутствие заправок водородом, инфраструктура которых очень слабо развита во всём мире.

По мере серийного производства большинство этих конструктивных и технологических недостатков будут преодолены, а по мере развития добычи водорода, как полезного ископаемого, и сети заправок, существенно понизится его стоимость.

В 2016 году появился первый поезд на водородном топливе, являющийся детищем немецкой компании Alstom. Планируется, что новый состав Coranda iLint начнет движение по маршруту из Букстехуде в Куксхавен (Нижняя Саксония).

В будущем планируется заменить такими поездами 4000 дизельных составов Германии, перемещающихся по участкам дорог без электрификации.

Во Франции выпустили оригинальную модель велосипеда на водороде. (Французский Pragma). Заливаешь всего 45 грамм водорода и в путь! Расход топлива - примерно 1 грамм на 3 километра.

Водород в космонавтике

Как горючее в паре с жидким кислородом (ЖК) жидкий водород (ЖВ) был предложен в 1903 г. К. Э. Циолковским. Он является горючим, с самым большим удельным импульсом (при любом окислителе), что позволяет при равной стартовой массе ракеты выводить в космос гораздо большую массу полезного груза. Однако на пути применения водородного топлива стояли объективные трудности.

Первая - сложность его сжижения (получение 1 кг ЖВ обходится в 20-100 раз дороже 1 кг керосина).

Вторая - неудовлетворительные физические параметры - чрезвычайно низкая температура кипения (-243°С) и очень малая плотность (ЖВ в 14 раз легче воды), что отрицательно сказывается на возможности хранения этого компонента.

В 1959 г. НАСА выдало крупный заказ на проектирование кислородно-водородного блока "Центавр". Он использовался в качестве верхних ступеней таких РН, как "Атлас", "Титан" и тяжелой ракеты "Сатурн".

Из-за крайне низкой плотности водорода, первые (самые большие) ступени ракет-носителей использовали другие (менее эффективные, но более плотные) виды горючего, например керосин, что позволяло уменьшить размеры до приемлемых. Пример такой «тактики» - ракета «Сатурн-5», в первой ступени которой применялись компоненты кислород/керосин, а во 2-й и 3-й ступени - кислородно-водородные двигатели J-2, тягой по 92104 т каждый.

Термический реактор Росси

Итальянский изобретатель Андреа Росси при поддержке научного консультанта физика Серджо Фокарди, провели эксперимент:

В герметичную трубку поместили насколько грамм никеля (Ni) добавили 10% алюмогидрида лития, катализатор и заполнили капсулу водородом (Н2). После нагрева до температуры порядка 1100-1300оС, парадоксально, но трубка оставалась в горячем состоянии на протяжении целого месяца, а выделенная тепловая энергия, в несколько раз превышала затраченную на нагрев!

На семинаре в Российском университете дружбы народов (РУДН) в декабре 2014 года, было доложено об успешном повторении этого процесса в России:

По аналогии выполнена трубка с топливом:

Выводы по эксперименту: выделение энергии в 2,58 раза больше затраченной электрической энергии.

В Советском Союзе работы по ХЯС велись с 1960 года в некоторых КБ и НИИ по заказу государства, но с "перестройкой" финансирование прекратилось. На сегодняшний день эксперименты успешно проводятся независимыми исследователями – энтузиастами. Финансирование осуществляется на личные средства коллективов граждан России. Одна из групп энтузиастов, под руководством Самсоненко Н.В., работает в здании «Инженерного корпуса» РУДН.

Ими был проведен ряд калибровочных тестов с электронагревательными приборами и реактором без топлива. В этом случае, как и следовало ожидать, выделяемая тепловая мощность равна подводимой электрической мощности.

Основная проблема – спекание порошка и локальный перегрев реактора, из-за чего нагревательная спираль перегорает и даже сам реактор может прогореть насквозь.

Но А.Г. Пархомову, удалось сделать длительно работающий реактор. Мощность нагревателя 300 Вт, КПД=300%.

Реакция синтеза 28Ni + 1H (ион) = 29Cu + Q согревает Землю изнутри!

Внутреннее ядро Земли содержит никель и водород, при температуре 5000К и давлении 1,36 Мбар, поэтому есть все условия для протекания реакции синтеза в недрах Земли, экспериментально воспроизведённой в реакторе Росси! В результате этой реакции получается медь, соединения которой находят в «черных курильщиках» зонах расширения Земли (срединно-океанических хребтах) в потоке богатом водородом.

Темный водород

В 2016 году учёные из США и Великобритании, создав при мгновенном сжатии давление 1,5 млн. атмосфер и температуру в несколько тысяч градусов, смогли получить третье промежуточное состояние водорода, при котором он одновременно имеет свойства и газа, и металла. Он получил название «тёмный водород», так как в этом состоянии он не пропускает видимый свет, в отличие от инфракрасного излучения. "Тёмный водород", в отличие от металлического, идеально вписывается в модель строения планет-гигантов. Он объясняет, почему их верхние слои атмосферы значительно теплее, чем должны быть, перенося энергию от ядра, а поскольку он обладает значительной электропроводностью, то играет ту же роль, что и внешнее ядро на Земле, формируя магнитное поле планеты!

Генерация водорода из глубин Черного моря

Бог одарил землю Крыма не только красивейшей и разнообразной природой, но и достаточными запасами различных ископаемых, в том числе и углеводородов. Но наш полуостров буквально "купается" в самом большом на планете водном хранилище природных газов, коим является Чёрное море.

Глубинные слои - ниже 150м, состоят из водородосодержащих соединений, основную часть которых составляет сероводород. По приблизительным оценкам, общее содержание сероводорода в Черном море может достигать 4.6 млрд. т, что, в свою очередь, служит потенциальным источником 270 млн. т водорода!

Запатентованы несколько способов разложения сероводорода с получением водорода и серы (H2S <=> H2 + S – Q), включающий контактирование сероводородсодержащего газа через слой твердого материала, способного разлагать его с выделением водорода и образованием серосодержащих соединений на поверхности материала, при давлении 15 атмосфер и температуре 400oС.

Наиболее перспективным, представляется разработка специальных гидрофобных мембран-фильтров, отделяющих водород от других газов прямо на глубине. Ведь мельчайшие из молекул легко просачиваются через металлы и даже в гранитных массивах живут колонии бактерий питающихся водородом!

Давайте помечтаем... Представим себе, что лет через десять на одном из мысов южного побережья Крыма, где морское дно резко понижается до глубин более 200 метров, будет построена небольшая станция. Из моря к ней протянутся рукава труб, на концах которых будут находиться сепараторы сероводорода. Водород после очистки поступит в сеть заправок автотранспорта и на когенераторную теплоэлектростанцию. Рядом с заводом разместиться ферма, где в водородной атмосфере будут выращивать анаэробные микроорганизмы, митоз которых происходит на порядок быстрее их обычных собратьев. Из их биомассы будут производить корм для скота и удобрения.

Мир неумолимо вступает в водородную эру!

Советник президента РФ академик РАН Сергей Глазьев подчеркивал: "Каждый из экономических циклов Кондратьева характеризуется своим энергоносителем: сначала дрова (органический углерод), уголь (углерод), потом нефть и мазут (тяжелые углеводороды), затем бензин и керосин (средние углеводороды), сейчас газ (легкие углеводороды), а основным энергоносителем следующего экономического цикла должен стать чистый водород!"

Применения водорода обширны, многогранны, энергетически выгодны, экологичны, и очень перспективны. Уже наши дети будут ездить на серийных автомобилях на водороде, использовать алмазные микропроцессоры, сделанные по водородной технологии, металлический водород совершит революцию в космонавтике, а развитие реакторов Росси - в энергетике!

Признание теории изначально гидридной Земли (В.Н.Ларина) приведёт к открытию ископаемых месторождений Н2, что сильно удешевит его получение. И не смотря на сопротивление "удушающих" Землю вредными выбросами нефтяных лоббистов, мы неизбежно вступаем в водородную эру!

Сывороткин В.Л., МГУ

На данный момент водород является самым разрабатываемым "топливом будущего". На это есть несколько причин: при окислении водорода образуется как побочный продукт вода, из нее же можно водород добывать. А если учесть, что 73% поверхности Земли покрыты водой, то можно считать, что водород неисчерпаемое топливо. Так же возможно использование водорода для осуществления термоядерного синтеза, который вот уже несколько миллиардов лет происходит на нашем Солнце и обеспечивает нас солнечной энергией.

Управляемый термоядерный синтез

Управляемый термоядерный синтез использует ядерную энергию, выделяющуюся при слиянии легких ядер, таких как ядра водорода или его изотопов дейтерия и трития. Ядерные реакции синтеза широко распространены в природе, будучи источником энергии звезд. Ближайшая к нам звезда - Солнце - это естественный термоядерный реактор, который уже многие миллиарды лет снабжает энергией жизнь на Земле. Ядерный синтез уже освоен человеком в земных условиях, но пока не для производства мирной энергии, а для производства оружия он используется в водородных бомбах. Начиная с 50 годов, в нашей стране и параллельно во многих других странах проводятся исследования по созданию управляемого термоядерного реактора. С самого начала стало ясно, что управляемый термоядерный синтез не имеет военного применения. В 1956 году исследования были рассекречены и с тех пор проводятся в рамках широкого международного сотрудничества. В то время казалось, что цель близка, и что первые крупные экспериментальные установки, построенные в конце 50 годов, получат термоядерную плазму. Однако потребовалось более 40 лет исследований для того, чтобы создать условия, при которых выделение термоядерной мощности сравнимо с мощностью нагрева реагирующей смеси. В 1997 году самая крупная термоядерная установка - Европейский Токамак, JET, получила 16 МВт термоядерной мощности и вплотную подошла к этому порогу.

Электроводородный генератор

В результате проведенных работ изобретено и патентуется по системе РСТ простое высокопроизводительное устройство для разложения воды и производства из нее беспрецедентно дешевого водорода методом гравитационного электролиза раствора электролита, получившее название "электроводородный генератор (ЭВГ)". Он приводится в действие механическим приводом и работает при обычной температуре в режиме теплового насоса, поглощая через свой теплообменник необходимое при этом тепло из окружающей среды или утилизируя теплопотери промышленных или транспортных энергоустановок. В процессе разложения воды подведенная к приводу ЭВГ избыточная механическая энергия может быть на 80 % преобразована в электроэнергию, которая затем используется любым потребителем на нужды полезной внешней нагрузки. При этом на каждую единицу затраченный мощности привода генератором в зависимости от заданного режима работы поглощается от 20 до 88 энергетических единиц низкопотенциального тепла, что собственно и компенсирует отрицательный термический эффект химической реакции разложения воды. Один кубический метр условного рабочего объема генератора, работающего в оптимальном режиме с КПД 86-98 %, способен за секунду произвести 3,5 м3 водорода и одновременно около 2,2 МДж постоянного электрического тока. Единичная тепловая мощность ЭВГ в зависимости от решаемой технической задачи может варьироваться от нескольких десятков ватт до 1000 МВт.

"Водородный" автомобиль

Французский автомобильный концерн Renault совместно с компанией Nuvera Fuel Cells планирует разработать серийный автомобиль, использующий в качестве топлива водород, уже к 2010 году (рис.6)

Рис. 6

Nuvera - небольшая американская компания, с 1991 года занимающаяся разработкой двигателей, альтернативных доминирующим сейчас бензиновым и дизельным. В основе разработок Nuvera лежит так называемый "топливный элемент" (Fuel Cell). Топливный элемент - устройство, не имеющее движущихся частей, в котором происходит химическая реакция водорода и кислорода, в результате которой вырабатывается электричество. Побочными продуктами реакции является выделяемое тепло и некоторое количество воды.

Принцип "топливного элемента" в корне отличается от обычного процесса электролиза, применяемого сейчас в батареях и аккумуляторах. Разработчики утверждают, что их продукция - это по сути дела "вечная батарейка", имеющая весьма значительный срок службы. Кроме того, в отличие от обычной батареи, "топливный элемент" не нуждается в подзарядке.

"Водородные батарейки"

Группа инженеров из технологического института штата Массачусетс (Massachusetts Institute of Technology) совместно со специалистами других университетов и компаний разрабатывает миниатюрный топливный двигатель, который в будущем сможет заменить батареи и аккумуляторы.

Журнал Popular Science, опубликовавший статью об исследованиях американских учёных, не удержался от восторга: "Вы только представьте себе жизнь без батареи! Когда топливо заканчивается в вашем ноутбуке, вы "заливаете полный бак" - и вперёд!"

История водородного двигателя. Если нефть называют топливом сегодняшнего дня (топливом века), то водород можно назвать топливом будущего .

При нормальных условиях водород - это газ без цвета, запаха и вкуса, самое легкое вещество (в 14,4 раза легче воздуха); отличается очень низкими температурами кипения и плавления, соответственно, -252,6 и -259,1 СС.

Жидкий водород - бесцветная жидкость, без запаха, при -253 °С имеет массу 0,0708 г/см 3 .

Своим названием водород обязан французскому ученому Антуану Лорану Лавуазье, который в 1787 г., разлагая и вновь синтезируя воду, предложил назвать второе составляющее (кислород был известен) - гидрофеном, что в переводе означает «рождающий воду», или «водород». До этого выделяющийся при взаимодействии кислот с металлами газ назывался «горючим воздухом».

Первый патент на двигатель, работающий на смеси водорода с кислородом, появился в 1841 г. в Англии, а спустя 11 лет придворный часовщик Христиан Тейман построил в Мюнхене двигатель, который проработал на смеси водорода с воздухом в течение нескольких лет.


Одной из причин того, что эти двигатели не получили распространения, послужило отсутствие в природе свободного водорода.

Вновь к водородному двигателю обратились уже в нашем веке - в 70-е годы в Англии учеными Рикардо и Брусталлом были проведены серьезные исследования. Экспериментально - путем изменения только подачи водорода - они установили, что двигатель на водороде может работать во всем диапазоне нагрузок, от холостого хода до полной нагрузки. Причем на бедных смесях были получены более высокие значения индикаторного КПД, чем на бензине.

В Германии в 1928 г. дирижаблестроительная фирма «Цеппелин» использовала водород в качестве обогатителя топлива, чтобы осуществить дальний испытательный перелет через Средиземное море.

Перед второй мировой войной в той же Германии применялись автодрезины, работавшие на водороде. Водород для них получали в электролизерах высокого давления, работавших от электросети на заправочных станциях, расположенных близ железной дороги.

Большую роль в совершенствовании водородного двигателя сыграли работы Рудольфа Эррена. Он впервые применил внутреннее смесеобразование, что позволило осуществить конвертирование жидкотопливных двигателей на водород при сохранении основной топливной системы и тем самым обеспечить работу двигателя на углеводородном топливе, водороде и жидком топливе с присадкой водорода. Интересно отметить, что переходить с одного вида топлива на другой можно было без остановки двигателя.


Одним из двигателей, конвертированных Эрреном, является дизель автобуса «Лейланд», опытная эксплуатация которого выявила высокую экономичность при добавке водорода к дизельному топливу.

Эррен разработал также водородокислородный двигатель, продуктом сгорания которого был водяной пар Некоторая часть пара возвращалась в цилиндр вместе с кислородом а ос тальная конденсировалась. Возможность работы такого двигателя без наружного выхлопа была использована на германских подводных лодках довоенной постройки. В надводном положении дизели обеспечивали ход лодки и давали энергию для разложения воды на водород и кислород, в подводном положении - работали на парокислородной смеси и водороде. При этом подводная лодка не нуждалась в воздухе для дизелей и не оставляла на поверхности воды следов в виде пузырьков азота, кислорода и других продуктов сгорания.

В нашей стране исследование возможностей использовать водород в двигателях внутреннего сгорания началось в 30-е годы.

В период блокады Ленинграда для подъема и спуска аэростатов воздушного заграждения использовались автомобили-лебедки с двигателями «ГАЗ-АА», которые были переведены на водородное питание. С 1942 г. водород успешно использовался в московской службе ПВО, им надували аэростаты.

В 50-е годы на речных судах предполагалось использовать водород, получаемый разложением воды током гидроэлектростанций.

Использование водорода в настоящее время

В 70-е годы под руководством академика В. В. Струминского были проведены испытания автомобильного двигателя «ГАЗ-652», работавшего на бензине и водороде, и двигателя «ГАЗ-24», работавшего на жидком водороде. Испытания показали, что при работе на водороде повышается КПД и уменьшается нагрев двигателя.

В Харьковском институте проблем машиностроения АН УССР и Харьковском автодорожном институте под руководством профессора И. Л. Варшавского были проведены исследования детонационной стойкости водородовоздушных и бензоводородовоздушных смесей, а также выполнены разработки по конвертированию на водород и добавке водорода к бензину двигателей автомобилей «Москвич-412», «ВАЗ-2101», «ГАЗ-24» с использованием для получения и хранения водорода энергоаккумулирующих веществ и гидридов тяжелых металлов. Эти разработки достигли стадии опытной эксплуатации на автобусах и такси.

В космонавтике появился новый класс летательных аппаратов, имеющих в земной атмосфере гиперзвуковые скорости. Для достижения таких скоростей необходимо топливо с высокой теплотворной способностью и низким молекулярным весом продуктов сгорания; кроме того, оно должно обладать большим хладоресурсом.

Этим требованиям как нельзя лучше отвечает водород. Он способен поглощать тепло в 30 раз больше, чем керосин. При нагревании от -253 по +900 °С (температура на входе в двигатель) 1 кг водорода может поглотить более 4000 ккал.

Омывая изнутри обшивку летательного аппарата перед поступлением, в камеру сгорания, жидкий водород поглощает все тепло, выделяющееся при разгоне аппарата до скорости, в 10-12 раз превосходящей скорость звука в воздухе.

Жидкий водород в паре с жидким кислородом был применен в последних ступенях сверхтяжелых американских ракет - носителей «Сатурн-5», что в определенной степени способствовало успеху космических программ «Аполлон» и «Скайлэб».

Моторные свойства топлива

Основные физико-химические и моторные свойства водорода в сравнении с пропаном и бензином приведены в табл. 1.


Водород обладает наиболее высокими энергомассовыми показателями, превосходящими традиционные углеводородные топлива в 2,5-3 раза, а спирты - в 5-6 раз. Однако из-за низкой плотности по объемной тепло-производительности он уступает большинству жидких и газообразных топлив. Теплота сгорания 1 м 3 водородовоздушной смеси на 15% меньше, чем у бензина. Вследствие худшего наполнения цилиндра из-за низкой плотности литровая мощность бензиновых двигателей при переводе на водород снижается на 20-25%.

Температура воспламенения водородных смесей выше, чем углеводородных, но для воспламенения первых требуется меньшее количество энергии. Водородовоздушные смеси отличаются высокой скоростью сгорания в двигателе, причем сгорание протекает практически при постоянном объеме, что ведет к резкому возрастанию давления (в 3 раза выше по сравнению с бензиновым эквивалентом). Однако на бедных и даже очень бедных смесях скорость горения водорода обеспечивает нормальную работу двигателя.

Водородовоздушные смеси обладают исключительно широким диапазоном горючести, что позволяет при любых изменениях нагрузки применять качественное регулирование. Низкий предел воспламенения обеспечивает работу водородного двигателя на всех скоростных режимах в широком диапазоне состава смеси, вследствие чего его КПД на частичных нагрузках увеличивается на 25-50%.

Для подачи водорода в двигатели внутреннего сгорания известны следующие способы: впрыск во впускной трубопровод; при помощи модификации карбюратора, аналогичной системам питания сжиженным и природным газами; индивидуальное дозирование водорода около впускного клапана; непосредственный впрыск под высоким давлением в камеру сгорания.

Для обеспечения устойчивой работы двигателя первый и второй способы могут применяться только при частичной рециркуляции отработавших газов, при помощи присадки к топливному заряду воды и добавки бензина.

Наилучшие результаты дает непосредственный впрыск водорода в камеру сгорания, при котором полностью исключаются обратные вспышки во впускном тракте, максимальная же мощность не только не уменьшается, но может быть повышена на 10-15%.

Запас топлива

Объемно-массовые характеристики различных систем хранения водорода приведены в табл. 2. Все они по габаритам и массе уступают бензину.


Из-за малого энергозапаса и значительного увеличения размеров и массы топливного бака газообразный водород не применяется. Не применяются на транспортных средствах и тяжелые баллоны высокого давления.

Жидкого водорода в криогенных емкостях, имеющих двойные стенки, пространство между которыми теплоизолировано.

Большой практический интерес представляет аккумулирование водорода при помощи металлогидридов. Некоторые металлы и сплавы, например ванадий, ниобий, железотитановый сплав (FeTi), марганцевоникелевый (Mg + 5% Ni) и другие, при определенных условиях могут соединяться с водородом. При этом образуются гидриды, содержащие большое количество водорода. Если к гидриду подводить тепло, он будет разлагаться, освобождая водорот. Восстановленные металлы и сплавы можно многократно использовать для соединения с водородом.

В гидридных системах для выделения водорода обычно используется тепло отработавших газов двигателя. Зарядка гидридного аккумулятора водородом производится под небольшим давлением с одновременным охлаждением проточной водой из водопровода. По термодинамическим свойствам и низкой стоимости наиболее подходящим компонентом является сплав FeTi.

Гидридный аккумулятор представляет собой пакет трубок (гидридных патронов) из нержавеющей стали, заполненных порошкообразным сплавом FeTi и заключенных в общую оболочку. В пространство между трубками пропускаются отработавшие газы двигателя или вода. Трубки с одной стороны объединены коллектором, который служит для хранения небольшого запаса водорода, необходимого для запуска двигателя и его работы на переходных режимах. По массе и объему гидридные аккумуляторы соизмеримы с системами хранения жидкого водорода. По энергоемкости они уступают бензину, но превосходят свинцовые электроаккумуляторы.

Гидридный способ хранения хорошо согласуется с режимами работы двигателя посредством автоматического регулирования расхода отработавших газов через гидридный аккумулятор. Гидридная система позволяет наиболее полно утилизовать тепловые потери с отработавшими газами и охлаждающей водой. На автомобиле «Шевроле Монте-Карло» применена опытная гидридно-криогенная система. В этой системе запуск двигателя производится на жидком водороде, а гидридный аккумулятор включается после прогрева двигателя, причем для подогрева гидрида используется вода из системы охлаждения.

В довоенной Германии в опытной гидридной системе, разработанной фирмой «Даймлер-Бенц», были применены два гидридных аккумулятора, один из которых - низкотемпературный - поглощает тепло из окружающей среды и работает как кондиционер, другой - нагревается охлаждающей жидкостью из системы охлаждения двигателя. Время, необходимое для зарядки гидридного аккумулятора, зависит от количества времени, необходимого для отвода тепла. При охлаждении водопроводной водой время полной заправки гидридного аккумулятора емкостью 65 л, содержащего 200 кг сплава FeTi и поглощающего 50 м3 водорода, составляет 45 мин, причем за первые 10 мин происходит 75%-ная заправка.

Преимущества водорода

Главными преимуществами водорода как топлива в настоящее время являются неограниченные запасы сырья и отсутствие или малое количество вредных веществ в отработавших газах.

Сырьевая база для получения водорода практически неограничена. Достаточно сказать, что во вселенной это самый распространенный элемент. В виде плазмы он составляет почти половину массы Солнца и большинства звезд. Газы межзвездной среды и газовые туманности также в основном состоят из водорода.

В земной коре содержание водорода составляет 1% по массе, а в воде - самом распространенном на Земле веществе - 11,19% по массе. Однако свободный водород встречается крайне редко и в минимальных количествах в вулканических и других природных газах.

Водород является уникальным топливом, которое добывается из воды и после сгорания вновь образует воду. Если в качестве окислителя применять кислород, то единственным продуктом сгорания будет дистиллированная вода. При использовании воздуха к воде добавляются окислы азота содержание которых зависит от коэффициента избытка воздуха.

При использовании водорода не требуются ядовитые свинцовые антидетонаторы.

Несмотря на отсутствие в водородном топливе углерода, в отработавших газах из-за выгорания углеводородных смазок, попадающих в камеру сгорания, может содержаться незначительное количество окиси углерода и углеводородов.

Фирмой «Дженерал Моторс» (США) в 1972 г. были проведены соревнования автомобилей на наиболее чистый выхлоп. В соревнованиях приняли участие аккумуляторные электромобили и 63 автомобиля, работавших на различных топливах, в том числе на газе - аммиаке, пропане. Первое место было присуждено конвертированному на водород автомобилю «Фольксваген », отработавшие газы которого оказались чище окружающего атмосферного воздуха, потребляемого двигателем.

При работе двигателей внутреннего сгорания на водороде вследствие значительно меньшего выделения твердых частиц и отсутствия органических кислот, образующихся при сгорании углеводородных топлив, увеличивается срок службы двигателя и сокращаются ремонтные расходы.

О недостатках

Газообразный водород обладает высокой диффузионной способностью - его коэффициент диффузии в воздухе более чем в 3 раза выше по сравнению с кислородом, двуокисью водорода и метаном.

Способность водорода проникать в толщу металлов, получившая название наводораживание, возрастает с повышением давления и температуры. Проникновение водорода в кристаллическую решетку большинства металлов на 4-6 мм при нагартовке снижается на 1,5-2 мм. Наводораживание алюминия, достигающее 15-30 мм, при нагартовке может быть снижено до 4-6 мм. Наводораживание большинства металлов практически полностью устраняется легированием хромом, молибденом, вольфрамом.

Углеродистые стали не пригодны для изготовления деталей, контактирующих с жидким водородом, так как становятся хрупкими при низких температурах, Для этих целей применяются хромоникелевые стали Х18Н10Т, ОХ18Н12Б, Х14Г14НЗТ, латуни Л-62, ЛС 69-1, ЛЖ МЦ 59-1-1, оловянофосфористая БР ОФ10-1, берилиевая БРБ2 и алюминиевые бронзы.

Криогенные (для низкотемпературных веществ) емкости для хранения жидкого водорода изготавливаются обычно из алюминиевых сплавов АМц, АМг, АМг-5В и др.

Смесь газообразного водорода с кислородом в широких пределах отличается склонностью к воспламеняемости и взрываемости. Поэтому закрытые помещения должны быть оборудованы детекторами, контролирующими его концентрацию в воздухе.

Высокая температура воспламенения и способность к быстрому рассеиванию в воздухе делают водород в открытых объемах по безопасности примерно равноценным природному газу.

Для определения взрывобезопасности при дорожно-транспортном происшествии жидкий водород из криогенной емкости проливали на землю, однако он мгновенно испарялся и не воспламенялся при попытках поджечь.

В США автомобиль «Кадиллак Эльдорадо», переоборудованный на водородное топливо, подвергался следующим испытаниям. В полностью заправленную гидридную емкость с водородом стреляли из винтовки бронебойными пулями. При этом взрыва не происходило, а бензобак при аналогичном испытании взрывался.

Таким образом, серьезные недостатки водорода - высокая диффузионная способность и широкая область воспламеняемости и взрываемости водородокислородной газовой смеси уже не являются причинами, препятствующими его применению на транспорте.

Перспективы

Как топливо водород уже применяется в ракетной технике. В настоящее время исследуются возможности его применения в авиации и на автомобильном транспорте. Уже известно, каким должен быть оптимальный водородный двигатель. Он должен иметь: степень сжатия 10-12, частоту вращения коленвала - не менее 3000 об/мин внутреннюю систему смесеобразования и работать при коэффициенте избытка воздуха α≥1,5. Но для реализации. такого двигателя нужно улучшить смесеобразование в цилиндре двигателя и выдать надежные рекомендации по конструированию.

Ученые прогнозируют начало широкого применения водородных двигателей на автомобилях не раньше 2000 г. До этого времени возможно применение добавок водорода к бензину; это позволит улучшить экономичность и снизить количество вредных выбросов в окружающую среду.

Представляет интерес перевод на водород роторно-поршневого двигателя, так как он не имеет картера и, следовательно, не взрывоопасен.

В настоящее время водород производят из природного газа. Использовать такой водород в качестве топлива невыгодно, дешевле сжигать в двигателях газ. Получение водорода разложением воды также экономически невыгодно из-за больших затрат энергии на расщепление молекулы воды Однако проводятся исследования и в этом направлении. Уже есть экспериментальные автомобили, снабженные собственной электролизной установкой, которая может подключаться к общей электросети; вырабатываемый водород накапливается в гидридном аккумуляторе.

На сегодняшний день стоимость электролитического водорода в 2,5 раза выше, чем получаемого из природного газа. Ученые объясняют это техническим несовершенством электролизеров и считают, что их КПД может быть увеличен в скором времени до 70-80%, в частности, за счет применения высокотемпературной технологии. По существующей технологии итоговый КПД электролитического производства водорода не превышает 30%.

Для прямого термического разложения воды требуется высокая температура порядка 5000 °С. Поэтому прямое разложение воды пока не осуществимо даже в термоядерном реакторе - трудно найти материалы, способные работать при такой температуре. Японским ученым Т. Накимурой для солнечных печей предложен двухступенчатый цикл разложения воды, не требующий столь высоких температур. Может быть, придет время, когда по двухступенчатому циклу водород будет вырабатываться гелиоводородными станциями, расположенными в океане, и ядерно-водородными станциями, вырабатывающими водорода больше, чем электроэнергии.

Как и природный газ, водород можно транспортировать по трубопроводам. Вследствие меньшей плотности и вязкости по одному и тому же трубопроводу при одинаковом давлении водорода можно перекачать в 2,7 раза больше, чем газа, однако затраты на транспортировку будут выше. Расходы энергии на транспортировку водорода по трубопроводам составят приблизительно 1% на 1000 кгс, что недостижимо для линий электропередач.

Водород можно хранить в газгольдерах с жидким затвором и в резервуарах. Во Франции уже есть опыт хранения под землей газа, содержащего 50% водорода. Жидкий водород можно хранить в криогенных емкостях, в гидридах металлов и в растворах.

Гидриды могут быть нечувствительны к загрязняющим примесям и способны селективно поглощать водород из газовой смеси. Это открывает возможность заправляться в ночное время от бытовой газовой сети, питаемой продуктами газификации угля.

Литература

  • 1. Владимиров А. Топливо больших скоростей. - Химия и жизнь. 1974, №12, с. 47-50.
  • 2. Воронов Г. Термоядерный реактор - источник водородного топлива. - Химия и жизнь, 1979, № 8, с. 17.
  • 3. Использование альтернативных топлив на автомобильном транспорте за рубежом. Обзорная информация. Серия 5. Экономика, управление и организация производства. ЦБНТИ Минавтотранса РСФСР, 1S82, вып. 2.
  • 4. Струминский В. В. Водород как топливо. - За рулем, 1980, Ко 8, с. 10-11.
  • 5. Xмыров В. И., Лавров Б. Е. Водородный двигатель. Алма-Ата, Наука, 1981.

Примечания

1. Редакция продолжает публикацию серии статей, посвященных перспективным видам топлива и проблемам экономии горючего (см. «КЯ» , ).

Биологическое топливо, производимое из растительного сырья и используемое в некоторых странах, не может полностью заменить углеводородное топливо. Его доля в современном количестве топлива для двигателей внутреннего сгорания (далее по тексту ДВС) составляет менее 1% .

Перевод на использование электроэнергии сопряжён с определёнными трудностями и ограничениями. В частности, пробег электромобилей без подзарядки не может удовлетворить даже нетребовательных автолюбителей. К тому же современная наука не в состоянии обеспечить электромобили малогабаритными и мощными аккумуляторными батареями.

Использование гибридных двигателей позволяет довольно-таки существенно уменьшить объёмы потребляемого бензина, но не избавляет полностью от его использования. Да и стоимость автомобилей с такими силовыми агрегатами не всем по карману.

Введение в водородную энергетику и топливные элементы

Новый вид топлива должен отвечать многим требованиям:

  1. Иметь достаточные по объёму сырьевые ресурсы.
  2. Его себестоимость не должна быть высокой.
  3. Современные ДВС должны без доработок, или с их минимальным количеством, работать на новом топливе.
  4. Выброс вредных веществ работающим двигателем должен быть минимальным.
  5. нового топлива должна быть выше существующего.

История использования водорода в качестве топлива

Водорода как топлива для ДВС не нова. Ещё в 1806 году изобретатель Франсуа Исаак де Рива запатентовал во Франции первый двигатель на водороде. Но его изобретение не получило признания и не имело успеха. С середины XIX века в качестве топлива стал широко использоваться бензин. В блокадном Ленинграде, в условиях тотального дефицита бензина, более 600 автомобилей успешно работали на водороде. После войны этот опыт был успешно забыт.

Вернуться к водородному топливу и всерьёз заняться научными изысканиями в этой области заставил второй половины прошлого столетия. Причём такими разработками занимались учёные практически всех развитых стран.

Нужно отметить определённые успехи, достигнутые в этой области. Такие известные производители, как Honda, Toyota, Hyundaiи другие выпускают свои модели водородных автомобилей.

Варианты использования водорода как топлива

Использовать водород как топливо для автомобилей можно разными способами:

  1. Используя только сам водород.
  2. Используя его в смеси с другими видами топлива.
  3. Применение водорода в топливных элементах.

Самый доступным методом производства водорода является сегодня электролитический метод, при котором водород получают из воды, путём воздействия сильного электрического тока, возникающего между разнополярными электродами. Сегодня более 90% добываемого водорода производится из углеводородных газов.

Использование чистого водорода для питания ДВС давно опробовано. И не получает широкого применения, в частности, по целому ряду объективных причин. А именно:

  1. Большой энергозатратности сегодняшних способов получения этого вида топлива.
  2. Необходимости создания и использования сверхгерметичных ёмкостей для хранения полученного водорода.
  3. Отсутствия сети станций для заправки автомобилей водородом.

Из дополнительного оборудования для сжигания водорода в ДВС автомобиля, устанавливается лишь система питания водородом и бак для его хранения. Такой метод допускает использование в качестве топлива, как водорода, так и бензина. Его используют в своих водородных автомобилях такие автогиганты как BMW и Mazda.

Возможно использование водорода в смеси с традиционным углеводородным топливом. Использование такого метода обусловлено теми же проблемами, что и метод работы ДВС на чистом водороде, и даёт значительную экономию бензина или дизельного топлива.

Но самым предпочтительным многие специалисты и автопроизводители признают автомобили, работающие с использованием топливных элементов. Не вдаваясь в технические подробности этот процесс можно описать как соединение водорода и кислорода в устройстве, называемом топливным элементом, в результате которого образуется электрический ток, подающийся на электродвигатели, приводящие автомобиль в движение. Побочным продуктом этого процесса является вода, которая в виде пара выводится наружу. Такой метод активно используют такие производители автомобилей как Nissan , Toyota и Ford .

Преимущества использования водородного топлива. Самое главное достоинство водородных двигателей – . Использование водорода избавит от огромного количества всевозможных вредных веществ, попадающих в окружающее пространство в виде выхлопов при использовании углеводородных видов топлива.

Привлекательным в сегодняшних реалиях является тот факт, что не утрачивается возможность использования того же бензина.

Отсутствие сложных и дорогостоящих систем подачи топлива также, несомненно, можно отнести к существенным преимуществам ДВС на водороде перед традиционными.

Ну и, конечно же, нельзя не сказать о существенно большем КПД водородного двигателя, по сравнению с классическими вариантами ДВС.

Недостатки автомобилей на водородном топливе. К ним можно отнести увеличение веса автомобиля за счёт установки водородного бака и другого дополнительного оборудования.

Довольно-таки низкая безопасность при сжигании чистого водорода в ДВС. Весьма велика вероятность его воспламенения и даже взрыва.

Дороговизна топливных водородных элементов, на использование которых делают упор многие автопроизводители.

Несовершенство нынешних ёмкостей для хранения водорода в автомобиле. До сих пор у учёных нет однозначного мнения по поводу материалов, из которых необходимо делать автомобильные баки для водорода.

Отсутствие сети станций для заправки автомобилей водородом делает эксплуатацию водородного автомобиля весьма затруднительной.

Выводы

Несмотря на существенные технические проблемы и недоработки, использование в будущем водорода как основного вида топлива имеет . Альтернативы ему, по крайней мере, сегодня, нет.