Вычислительная машина лейбница. Готфрид лейбниц создатель арифметической машины и проекта двоичного вычислителя

Механический период

Эскиз механического тринадцатиразрядного суммирующего устройства с десятью колесами был разработан еще Леонардо да Винчи (1452-- 1519). По этим чертежам в наши дни фирма IBM в целях рекламы построила работоспособную машину.

Первая механическая счетная машина была изготовлена в 1623 г. профессором математики Вильгельмом Шиккардом (1592--1636). В ней были механизированы операции сложения и вычитания, а умножение и деление выполнялось с элементами механизации. Но машина Шиккарда вскоре сгорела во время пожара. Поэтому биография механических вычислительных устройств ведется от суммирующей машины, изготовленной в 1642 г. Блезом Паскалем.

В 1673 г. другой великий математик Готфрид Лейбниц разработал счетное устройство, на котором уже можно было умножать и делить.

В 1880г. В.Т. Однер создает в России арифмометр с зубчаткой с переменным количеством зубцов, а в 1890 году налаживает массовый выпуск усовершенствованных арифмометров, которые в первой четверти 19-ого века были основными математическими машинами, нашедшими применение во всем мире. Их модернизация "Феликс" выпускалась в СССР до 50-х годов.

Мысль о создании автоматической вычислительной машины, которая бы работала без участия человека, впервые была высказана английским математиком Чарльзом Бэббиджем (1791--1864) в начале XIX в. В 1820--1822 гг. он построил машину, которая могла вычислять таблицы значений многочленов второго порядка.

.Машина Блеза Паскаля.

Считается, что первую механическую машину, которая могла выполнять сложение и вычитание, изобрел в 1646г. молодой 18-летний французский математик и физик Блез Паскаль. Она называется "паскалина".

Формой своей машина напоминала длинный сундучок. Она была достаточно громоздка, имела несколько специальных рукояток, при помощи которых осуществлялось управление, имела ряд маленьких колес с зубьями. Первое колесо считало единицы, второе - десятки, третье - сотни и т.д. Сложение в машине Паскаля производится вращением колес вперед. Двигая их обратно, выполняется вычитание.

Машина Готфрида Лейбница

Следующим шагом было изобретение машины, которая могла выполнять умножение и деление. Такую машину изобрел в 1671 г. немец Готфрид Лейбниц. Хоть машина Лейбница и была похожа на "Паскалину", она имела движущуюся часть и ручку, с помощью которой можно было крутить специальное колесо или цилиндры, расположенные внутри аппарата. Такой механизм позволил ускорить повторяющиеся операции сложения, необходимые для умножения. Само повторение тоже осуществлялось автоматически.

Перфокарты Жаккара

Французский ткач и механик Жозеф Жаккар создал первый образец машины, управляемой введением в нее информацией. В 1802 г. он построил машину, которая облегчила процесс производства тканей со сложным узором. При изготовлении такой ткани нужно поднять или опустить каждую из ряда нитей. После этого ткацкий станок протягивает между поднятыми и пущенными нитями другую нить. Затем каждая из нитей опускается или поднимается в определенном порядке и станок снова пропускает через них нить. Этот процесс многократно повторяется до тех пор, пока не будет получена нужная длина ткани с узором. Для задания узора на ткани Жаккар использовал ряды отверстий на картах. Если применялось десять нитей, то в каждом ряду карты предусматривалось место для десяти отверстий. Карта закреплялась на станке в устройстве, которое могло обнаруживать отверстия на карте. Это устройство с помощью щупов проверяло каждый ряд отверстий на карте. Информация на карте управляла станком.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Отделение связей с общественностью

Кафедра связей с общественностью

СЧЕТНАЯ МАШИНА ЛЕЙБНИЦА ГОТФРИДА ВИЛЬГЕЛЬМА

(реферат по «Информатике»)

Барнаул 2011


Введение

1. Биография Лейбница Готфрида Вильгельма

2. Научная деятельность Лейбница Готфрида Вильгельма

3. Счетная машина

Заключение

Список используемой литературы


Введение

Много бед принесла Германии первая половина XVII столетия. Тридцатилетняя война опустошила множество деревень и городов, привела в упадок торговлю и ремесла; население страны уменьшилось с 16 до 6 миллионов человек. Когда наступил долгожданный мир, "Германия оказалась поверженной - беспомощной, растоптанной, растерзанной, истекающей кровью..."

Но - парадокс! - именно эта несчастная страна, которая в научном отношении тогда представляла собой глухую провинцию (она имела лишь одного ученого мирового класса - Иоанна Кеплера), подарила человечеству Готфрида Вильгельма Лейбница, чей универсальный гений оказал громадное влияние на развитие не только немецкой, но и всей европейской науки.

Лейбниц Готфрид Вильгельм является немецким философом, математиком-физиком, юристом, дипломатом, экономистом, лингвистом, археологом и историографом. Его заслуги велики. Он является одной из центральных фигур в развитии логики. Его логическое наследие - поразительный феномен в истории мысли. А его ориентация на математизацию, алгебраизацию и аксиоматизацию логики опередила время минимум на полтора столетия. Поэтому логические идеи пронизывают практически все интеллектуальное наследие Лейбница, так или иначе, затрагиваются во всех его работах от ранней диссертации до «Монадологии» и «Новых опытов о человеческом разуме».

Готфрид Вильгельм изобрел счетную машину, которая стала открытием XVIIвека. Я хочу более подробно рассмотреть механизм и последовательность работы данного изобретения.

лейбниц счетный калькулятор


1. Биография Готфрида Вильгельма Лейбница (1646-1716)

Готфрид Вильгельм фон Лейбниц (нем. GottfriedWilhelmvonLeibniz) родился 21 июня1646 в г. Лейпциге (Германия), в семье профессора философии морали (этики) лейпцигского университета Фридриха Лейбнюца (нем. FriedrichLeibnütz) и Катерины Шмук (нем. CatherinaSchmuck).

Когда мальчику было 8 лет, его отец умер, оставив после себя большую личную библиотеку. Свободный доступ к книгам и врождённый талант позволили молодому Лейбницу уже к 12 годам самостоятельно изучить латынь и взяться за изучение греческого языка.

В 15-летнем возрасте (1661) Готфрид Вильгельм сам поступил в тот же Лейпцигский университет, где когда-то работал его отец. В свою бытность студентом он познакомился с работами Кеплера, Галилея и других учёных. Спустя 2 года переходит в Йенский университет, где изучает математику. Затем возвращается в Лейпциг изучать право, но получить докторскую степень там не удалось. Расстроенный отказом, Лейбниц отправился в Нюрнбергский университет в Альтдорфе, где успешно защищает диссертацию на соискание степени доктора права. Диссертация была посвящена разбору вопроса о запутанных юридических случаях. Защита состоялась 5 ноября 1666 года; эрудиция, ясность изложения и ораторский талант Лейбница вызывают всеобщее восхищение.

В этом же году он написал первое из своих многочисленных сочинений: «О комбинаторном искусстве». Опередив время на два века, 20-летний Лейбниц задумал проект математизации логики. Будущую теорию (которую он так и не завершил) он называет «всеобщая характеристика». Она включала все логические операции, свойства которых он ясно представлял.

Закончив обучение, он устраивается советником курфюрста Майнцского по юридическим и торговым делам (1670). Работа требовала постоянных разъездов по всей Европе; в ходе этих путешествий он подружился с Гюйгенсом, который согласился обучать его математике. Служба, однако, продолжалась недолго, в начале 1672 года Лейбниц с важной дипломатической миссией покинул Майнц, а спустя год курфюрст умер.

Затем с 1676 года и до конца жизни Лейбниц в течение сорока лет находился на службе при Браун-Люнебургском герцогском дворе.

В это время Лейбниц изобретает собственную конструкцию арифмометра, гораздо лучше паскалевской - он умел выполнять умножение, деление и извлечение корней. Предложенные им ступенчатый валик и подвижная каретка легли в основу всех последующих арифмометров.

Но в его жизни было и немало безрадостного. Окруженный недоверием, презрением и недоброй славой полуатеиста, великий философ и ученый доживал последние годы, оказываясь иногда без жалования и терпя крайнюю нужду. Для англичан он был ненавистен как противник Ньютона в спорах о научном приоритете, для немцев он был чужд и опасен как человек, перетолковывающий все общепринятое по-своему. Горьким был и личный итог жизни и деятельности Лейбница: непонятый и презираемый, притесняемый и гонимый невежественной придворной кликой, он пережил крушение лучших своих надежд. Пренебрежение и вражда власть имущих и церковников к великому мыслителю преследовали его и после смерти.

Но сейчас всеми признано, что Лейбницу были свойственны исключительно широкий кругозор и диапазон деятельности, одновременное усмотрение разнообразных связей разбираемых им проблем и целеустремленное исследование внутреннего их существа. Лейбниц обладал поразительной сжатостью и точностью стиля, творческой энергией и умением подметить самые различные следствия, вытекающие из выдвинутых им положений.


2. Научная деятельность Готфрида Вильгельма Лейбница

Лейбниц - один из важнейших представителей новоевропейской метафизики, в центре внимания которой - вопрос о том, что такое субстанция. Лейбниц развивает систему, получившую название субстанциальный плюрализм или монадология.

Важнейшими научными достижениями Лейбница являются то, что Лейбниц, независимо от Ньютона, создал математический анализ - дифференциальное и интегральное исчисление и в 1684 публикует первую в мире крупную работу по дифференциальному исчислению: «Новый метод максимумов и минимумов». В этой работе Лейбница излагаются основы дифференциального исчисления, правила дифференцирования выражений. Используя геометрическое истолкование отношения dy/dx, он кратко разъясняет признаки возрастания и убывания, максимума и минимума, выпуклости и вогнутости (следовательно, и достаточные условия экстремума для простейшего случая), а также точки перегиба. Попутно без каких-либо пояснений вводятся «разности разностей» (кратные дифференциалы), обозначаемые ddv.

Также создал комбинаторику как науку; только он во всей истории математики одинаково свободно работал как с непрерывным, так и с дискретным. Готфрид Вильгельм обосновал необходимость регулярно измерять у больных температуру тела. Задолго до Зигмунда Фрейда привёл доказательства существования подсознания человека.

В 1686 Лейбниц даёт подразделение вещественных чисел на алгебраические и трансцендентные; ещё раньше он аналогично классифицировал кривые линии. Впервые в печати вводит символ интеграла и указывает, что эта операция обратна дифференцированию. А в 1692 вводит общее понятие огибающей однопараметрического семейства кривых, выводит её уравнение.

Затем Лейбниц рассматривает вопрос о разрешимости линейных систем; его результат фактически вводит понятие определителя. Но это открытие не вызвало тогда интереса, и линейная алгебра возникла только спустя полвека.

В 1695 Лейбниц вводит показательную функцию в самом общем виде: uv. Чуть позже, в 1702 совместно с Иоганном Бернулли открыл приём разложения рациональных дробей на сумму простейших. Это решает многие вопросы интегрирования рациональных функций.

Лейбниц также описал двоичную систему счисления с цифрами 0 и 1, на которой основана современная компьютерная техника.

В физике Лейбниц ввёл понятие «живой силы», позднее получившей название кинетической энергии.

3. Счетная машина

Первая счетная машина, позволявшая производить умножение и деление также легко, как сложение и вычитание, была изобретена в Германии в 1673 году Готфридом Вильгельмом Лейбницем и называлась «Калькулятор Лейбница».

Идея создать такую машину у Вильгельма Лейбница появилась после знакомства с голландским астрономом и математиком Христианом Гюйгенсом. Видя нескончаемые вычисления, которые астроному приходилось производить, обрабатывая свои наблюдения, Лейбниц решил создать устройство, которое ускорило и облегчило бы эту работу.

Первое описание своей машины Лейбниц сделал в 1670 году. Через два года ученый составил новое эскизное описание, на основе которого в 1673 году построил действующее арифметическое устройство и продемонстрировал его в феврале 1673 года на заседании Лондонского Королевского общества. В заключение своего выступления он признал, что устройство не совершенно, и пообещал его улучшить.

В 1674 – 1676 годах Лейбниц провел большую работу по улучшению изобретения и привез в Лондон новый вариант калькулятора. Это была малоразрядная модель счетной машины, не пригодная для практического применения. И только в 1694 году Лейбниц сконструировал двенадцатиразрядную модель. Впоследствии калькулятор несколько раз дорабатывался. Последний вариант был создан в 1710 году. По образцу двенадцатиразрядной счетной машины Лейбница в 1708 году профессор Вагнер и мастер Левин создали шестнадцатиразрядную счетную машину.Работа над калькулятором Лейбницу обошлась в 24 000 талеров. Для сравнения, годовая зарплата министра по тем временам составляла 1 – 2 тысячи талеров.

Описание калькулятора Лейбница ведется на основе одной из сохранившихся моделей, находящейся в музее в Ганновере. Она представляет собой ящик около метра длинной, 30 сантиметров шириной и около 25 сантиметров высотой.

Были построены два прототипа машины Лейбница. Сегодня только одна из них находится в Национальной библиотеке Нижней Саксонии (Нидерландская Landesbibliothek) в Ганновере, Германия. Несколько более поздние образцы демонстрируются, например, в Немецком музее в Мюнхене. Несмотря на механические недостатки ступенчатого счетчика, он подарил возможности будущим строителям калькуляторов. Действующий механизм, изобретенный Лейбницем, называемый ступенчатым цилиндром или колесом Лейбница, использовался на многих вычислительных машинах в течение 200 лет, а в 1970-е был заменен ручным калькулятором Курта. Год создания машины Лейбница - 1673-й.

Колесо Лейбница

Колесо или ступенчатый барабан представляет собой цилиндр с набором зубцов инкрементных длин, которые при соединении со счетным колесом могут использоваться в вычислительном двигателе класса механических калькуляторов. Изобретенный Лейбницем в 1673 году, он использовался в течение трех столетий до появления электронного калькулятора в середине 1970-х годов.

Лейбниц построил машину, названную ступенчатым реконером (или машиной Лейбница), на основе конструкции ступенчатого барабана в 1694-м. Он был широко прославлен Томасом де Кольмаром, когда он использовал его спустя полтора века в своем арифмометре, первой серийной вычислительной машине. Он также использовался в калькуляторе Курта, очень популярном портативном калькуляторе, представленном во второй половине 20-го века.

Если соединить колесо Лейбница со счетным колесом, свободным для перемещения вверх и вниз по его длине, счетное колесо может зацепляться с любым количеством зубов. Фото машины Лейбница вы можете увидеть в этой статье. Многие энтузиасты пытаются воссоздать это чудо 17-го века в домашних условиях, используя подручные материалы.

Машина Лейбница: принцип работы

Этот примитивный калькулятор обладал девятью зубцами, соединенными с красным счетным колесом.

В вычислительном устройстве арифмометра имеется набор связанных колес, соединенных с рукояткой кривошипа. Каждый поворот рукоятки кривошипа поворачивает все колеса на один полный оборот. Входные ползунки перемещают подсчетные колеса вверх и вниз по колесам, которые сами связаны механизмом переноса.

Начиная с конца девятнадцатого века барабаны Лейбница, извлеченные из этого механизма и используемые во всех прото-калькуляторах, были частично вытеснены штифтами, которые по своей функции похожи, но обладали более компактным видом. Ступенчатые барабаны оставались основной технологией для электромеханических калькуляторов до разработки чисто электронных аналогов в прошлом веке.

Счетная машина была создана на базе механизма, который изобрел Лейбниц и который теперь называется машиной Лейбница. Неясно, сколько было сделано разных экземпляров этого первого в мире калькулятора. Некоторые источники утверждают, что их было 12. В этом статье описывается сохранившийся 16-значный прототип, хранящийся в Ганновере.

Описание

Машина имеет длину около 67 см (26 дюймов), выполнена из полированной латуни и стали, смонтирована в дубовом корпусе. Она состоит из двух прикрепленных параллельных частей. Секция аккумулятора находилась сзади, клавиатура вмещала 16 десятичных цифр и 8-разрядную секцию ввода спереди.

Секция ввода имеет 8 наборов с кнопками для установки номера операнда, телефонный диск справа, чтобы установить цифру множителя, и кривошип на передней панели для выполнения расчета. Результат исчисления появлялся в 16-значном окошке задней части аккумулятора.

Секция ввода монтируется на рельсах и может перемещаться вдоль аккумуляторной секции с помощью кривошипа на левом конце, который вращает червячную шестерню, чтобы изменить выравнивание цифр операндов с помощью цифр аккумулятора.

Существует также индикатор переноса с десятками и элемент управления для установки нолей при расчетах.

Сложение и вычитание

Сложение или вычитание выполняется за один шаг с поворотом рукоятки. Умножение и деление выполняются с помощью клавиш умножителя или делителя в процедуре, эквивалентной знакомым методам длительного умножения и длительного разделения, которые преподаются в школе. Последовательности этих операций могут выполняться по числу в аккумуляторе: например, он может вычислять корни с помощью серии разделов и дополнений. Для своего времени счетная машина Лейбница была очень прогрессивным механизмом. Ее компоненты, как уже писалось выше, использовались в механических калькуляторах на протяжении целых 300 лет, что кажется совершенно невероятным.

История

Лейбниц разработал идею вычислительной машины в 1672 году в Париже благодаря шагомеру. Позже он узнал о машине Блеза Паскаля, когда прочитал его трактат Pensees. Он сосредоточился на расширении механизма Паскаля, чтобы он мог умножать и делить. 1 февраля 1673 года он представил деревянную модель Лондонскому королевскому обществу и получил большую поддержку. В письме от 26 марта 1673 года Иоганну Фридриху, где он упомянул о представлении в Лондоне, Лейбниц описал цель «арифметической машины» как составление расчетов leicht, geschwind, gewiß, то есть легко, быстро и точно. Лейбниц также добавил, что теоретически рассчитанные числа могут быть еще большими, если бы размер машины был как следует скорректирован. Первая предварительная латунная машина Готфрида Лейбница была построена между 1674 и 1685 годами. Его так называемая старая машина была построена между 1686 и 1694 гг. «Более молодая машина», сохранившаяся до наших времен и выставленная в Ганновере, была построена с 1690 по 1720 год.

В 1775 году «младшая машина» была отправлена ​​в Геттингенский университет для ремонта и забыта. В 1876 году рабочие нашли ее в мансарде университетского здания в Геттингене. Она была возвращена в Ганновер в 1880 году. С 1894 по 1896 год Артур Буркхардт, основатель крупной немецкой калькуляторной компании, восстановил ее.

Функционал

Машина выполняет умножение путем повторного добавления и деление путем повторного вычитания. Основная выполняемая операция заключается в том, чтобы добавить (или вычесть) номер операнда в регистр накопителя столько раз, сколько требуется (чтобы вычесть, рабочий кривошип поворачивается в противоположном направлении). Количество дополнений (или вычитаний) контролируется множителем. Он работает, как телефонный диск, с десятью отверстиями по окружности с номерами от 0 до 9. Чтобы умножить на одну цифру, в соответствующее отверстие на циферблате вставлен стилус в форме ручки, а кривошип повернут. Циферблат мультипликатора поворачивается по часовой стрелке, машина выполняет одно добавление для каждого отверстия, пока стилус не остановится в верхней части циферблата. Результат появляется в окнах накопителя.

Повторные вычитания выполняются аналогично, за исключением того, что множительный циферблат поворачивается в противоположном направлении, поэтому используется второй набор цифр, выделенный красным цветом. Чтобы выполнить одно сложение или вычитание, множитель просто устанавливается на единицу. Как можно понять, вычислительная машина Лейбница была крайне удобной для своего времени.

Сложное умножение

  1. Множитель устанавливается в циклы операндов.
  2. Первая (наименее значимая) цифра множителя устанавливается в циферблат множителя, как это описано выше, и кривошип поворачивается, умножая операнд на эту цифру и помещая результат в окно накопителя.
  3. Секция ввода сдвигается на одну цифру влево с помощью концевого кривошипа.
  4. Следующая цифра умножителя устанавливается в циферблат множителя, а кривошип снова поворачивается, умножая операнд на эту цифру и добавляя результат к окну.
  5. Вышеуказанные 2 шага повторяются для каждой цифры умножителя. В конце результат появляется в окнах.
  6. Таким образом, операнд может быть умножен на любое большое число, которое требуется человеку, хотя результат ограничен емкостью окон накопителя.

Деление

Операция деления на машине Лейбница проводится несколько иным способом:

  1. Дивиденд устанавливается в накопитель, а делитель устанавливается в циклы операндов.
  2. Секция ввода перемещается с помощью концевого кривошипа до тех пор, пока левая и правая цифры этих двух номеров не выстроятся в линию.
  3. Кривошип операции поворачивается, и делитель вычитается из аккумулятора несколько раз, пока левая (самая значительная) цифра результата не будет равняться нолю.
  4. Число, отображаемое на циферблате множителя, - это первая цифра желаемого результата.
  5. Секция ввода сдвигается на одну цифру.
  6. Вышеупомянутые два шага повторяются, чтобы получить каждую цифру нужного результата, пока входная каретка не достигнет правого конца аккумулятора.
  7. Можно видеть, что эти процедуры являются просто механизированными версиями длинного разделения и умножения.

Калькулятор Паскаля

Калькулятор Паскаля (также известный как арифметическая машина или "Паскалина") - это механический калькулятор, изобретенный Блезом Паскалем в начале 17-го века. Паскалю было предложено разработать калькулятор для трудоемких арифметических расчетов, необходимых для работы в качестве руководителя налоговой службы в Руане. Он разработал машину для добавления и вычитания двух чисел непосредственно и для выполнения умножения и деления путем повторного сложения или вычитания.

Калькулятор Паскаля был особенно успешным в части механизма переноса, который добавляет от 1 до 9 на одном циферблате, а когда он меняется от 9 до 0, переносит 1 в следующую таблицу, находящуюся рядом. Паскаль был первым ученым, который переработал и адаптировал для своей цели фонарный механизм, используемый в башенных часах и водяных колесах. Арифметическая машина Лейбница в известной степени стала продолжением идеи Паскаля, и его опыт был изучен и использован немецким ученым для создания собственного механического шедевра.

Калькулятор Лейбница

Первая счетная машина, позволявшая производить умножение и деление также легко, как сложение и вычитание, была изобретена в Германии в 1673 году Готфридом Вильгельмом Лейбницем (1646-1716), и называлась «Калькулятор Лейбница».

Идея создать такую машину у Вильгельма Лейбница появилась после знакомства с голландским астрономом и математиком Христианом Гюйгенсом. Видя нескончаемые вычисления, которые астроному приходилось производить, обрабатывая свои наблюдения, Лейбниц решил создать устройство, которое ускорило и облегчило бы эту работу.

Первое описание своей машины Лейбниц сделал в 1670 году. Через два года ученый составил новое эскизное описание, на основе которого в 1673 году построил действующее арифметическое устройство и продемонстрировал его в феврале 1673 года на заседании Лондонского Королевского общества. В заключение своего выступления он признал, что устройство не совершенно, и пообещал его улучшить.

В 1674 – 1676 годах Лейбниц провел большую работу по улучшению изобретения и привез в Лондон новый вариант калькулятора. Это была малоразрядная модель счетной машины, не пригодная для практического применения. И только в 1694 году Лейбниц сконструировал 12 разрядную модель. Впоследствии калькулятор несколько раз дорабатывался. Последний вариант был создан в 1710 году. По образцу двенадцатиразрядной счетной машины Лейбница в 1708 году профессор Вагнер и мастер Левин создали шестнадцатиразрядную счетную машину.

Как видно, работа над изобретением была длительной, но не непрерывной. Лейбниц одновременно трудился в самых разных областях науки. В 1695 году он писал: «Уже свыше двадцати лет назад французы и англичане видели мою счетную машину... с тех пор Ольденбург, Гюйгенс и Арно, сами или через своих друзей, побуждали меня издать описание этого искусного устройства, а я все откладывал это, потому что я сперва имел только маленькую модель этой машины, которая годится для демонстрации механику, но не для пользования. Теперь же с помощью собранных мною рабочих готова машина, позволяющая перемножать до двенадцати разрядов. Уже год, как я этого достиг, но рабочие еще при мне, чтобы можно было изготовить другие подобные машины, так как их требуют из разных мест».

Работа над калькулятором Лейбницу обошлась в 24 000 талеров. Для сравнения, годовая зарплата министра по тем временам составляла 1 – 2 тысячи талеров.

К сожалению, с полной уверенностью не об одной из сохранившихся моделей калькулятора Лейбница нельзя сказать, что она была создана именно автором. Из-за чего существует много предположений относительно изобретения Лейбница. Есть мнения, что ученый только высказал идею применения ступенчатого валика, или что он не создавал калькулятор целиком, а только демонстрировал работу отдельных механизмов устройства. Но, несмотря на все сомнения, можно точно утверждать, что идеи Лейбница надолго определили путь развития вычислительной техники.

Мы будем вести описание калькулятора Лейбница на основе одной из сохранившихся моделей, находящейся в музее в Ганновере. Она представляет собой ящик около метра длинной, 30 сантиметров шириной и около 25 сантиметров высотой.

Изначально, Лейбниц пытался лишь улучшить уже существующее устройство Паскаля , но вскоре он понял, что операция умножения и деления требуют принципиально нового решения, которое бы позволяло вводить множимое только один раз.

О своей машине Лейбниц писал: «Мне посчастливилось построить такую арифметическую машину, которая бесконечно отличается от машины Паскаля, так как моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию».

Это стало возможно, благодаря разработанному Лейбницем цилиндру, на боковой поверхности которого, параллельно образующей, располагались зубья различной длины. Этот цилиндр получил название «Ступенчатый валик».

К ступенчатому валику крепится зубчатая рейка. Эта рейка входит в сцепление с десятизубым колесом №1, к которому прикреплялся циферблат с цифрами от 0 до 10. Поворотом этого циферблата задается значение соответствующего разряда множимого.

Например, если второй разряд множимого равнялся 5, то циферблат, отвечающий за установку этого разряда, поворачивался в положение 5. В результате десятизубое колесо № 1, с помощью зубчатой рейки, так перемещало ступенчатый валик, что при повороте на 360 градусов он входит в зацеплении с десятизубым колесом № 2 только пятью наиболее длинными ребрами. Соответственно, десятизубое колесо №2 поворачивалось на пять частей полного оборота, на столько же поворачивался и связанный с ним цифровой диск, отображающий результирующее значение выполненной операции.

При следующем обороте валика на цифровой диск снова перенесется пятерка. Если цифровой диск совершал полный оборот, то результат переполнения переносился на следующий разряд.

Поворот ступенчатых валиков осуществлялся с помощью специальной ручки – главного приводного колеса.

Таким образом, при выполнении операции умножения не требовалось многократно вводить множимое, а достаточно вести его один раз и повернуть ручку главного приводного колеса столько раз, на сколько необходимо произвести умножение. Однако, если множитель будет велик, то операция умножения займет длительное время. Для решения этой проблемы Лейбниц использовал сдвиг множимого, т.е. отдельно происходило умножение на единицы, десятки, сотни и так далее множителя.

Для возможности сдвига множимого устройство было разделено на две части - подвижную и неподвижную. В неподвижной части размещался основной счетчик и ступенчатые валики устройства ввода множимого. Установочная часть устройства ввода множимого, вспомогательный счетчик и, главное, приводное колесо располагаются на подвижной части. Для сдвига восьмиразрядного множимого использовалось вспомогательное приводное колесо.

Так же для облегчения умножения и деления Лейбниц разработал вспомогательный счетчик, состоящий из трех частей.

Наружная часть вспомогательного счетчика - неподвижная. На ней нанесены числа от 0 до 9 для отсчета количества сложений множимого при произведении операции умножения. Между цифрами 0 и 9 расположен упор, предназначенный остановить вращение вспомогательного счетчика, когда штифт достигнет упора.

Средняя часть вспомогательного счетчика – подвижная, которая служит для отсчета количества сложений при умножении и вычитаний при делении. На ней имеется десять отверстий, напротив цифр внешней и внутренней частей счетчика, в которые вставляется штифт для ограничения вращения счетчика.

Внутренняя часть - неподвижная, которая служит для отчета количества вычитаний при выполнении операции деления. На ней нанесены цифры от 0 до 9 в обратном, относительно наружной части, порядке.

При полном повороте главного приводного колеса средняя часть вспомогательного счетчика поворачивается на одно деление. Если предварительно вставить штифт, например, в отверстие напротив цифры 4 внешней части вспомогательного счетчика, то после четырех оборотов главного приводного колеса этот штифт наткнется на неподвижный упор и остановит вращение главного приводного колеса.

Рассмотрим принцип работы калькулятора Лейбница на примере умножения 10456 на 472:

1. С помощью циферблатов вводится множимое (10456).

2. Устанавливается штифт в среднюю часть вспомогательного счетчика, напротив цифры 2, нанесенной на наружную часть вспомогательного счетчика.

3. Поворачивают главное приводное колесо по часовой стрелки, пока штифт, вставленный в вспомогательный счетчик, не упрется в упор (два поворота).

4. Сдвигается подвижная часть калькулятора Лейбница на одно деление влево, используя вспомогательное приводное колесо.

5. Устанавливается штифт в среднюю часть вспомогательного счетчика, напротив цифры, соответствующей количеству десяток множителя (7).

6. Поворачивается главное приводное колесо по часовой стрелки, пока штифт, вставленный в вспомогательный счетчик, не упрется в упор (семь поворотов).

7. Подвижная часть калькулятора Лейбница сдвигается еще на одно деление влево.

8. Устанавливается штифт в среднюю часть вспомогательного счетчика, напротив цифры, соответствующей количеству сотен множителя (4).

9. Поворачивают главное приводное колесо по часовой стрелки, пока штифт, вставленный в вспомогательный счетчик, не упрется в упор (четыре поворота).

10. Число, появившиеся в окошках отображения результата, – искомое произведение 10456 на 472 (10456 х 472 = 4 935 232).

При делении, сначала, в калькулятор Лейбница вводится делимое с помощью циферблатов, и один раз поворачивается главное приводное колесо по часовой стрелке. Затем, с помощью циферблатов вводится делитель, и главное приводное колесо начинает вращаться против часовой стрелки. При этом результат деления – это количество оборотов главного приводного колеса, а в окошках отображения результатов индицировался остаток от деления.

Если делимое много больше делителя, то для ускорения деления используют сдвиг делителя на необходимое количество разрядов влево с помощью вспомогательного приводного колеса. При этом, во время подсчета количества оборотов главного приводного колеса, необходимо учитывать сдвиг (один оборот главного приводного колеса при сдвиге подвижной части калькулятора Лейбница на одну позицию влево приравнивается к десяти оборотам главного приводного колеса).

Рассмотрим принцип работы калькулятора Лейбница на примере деления 863 на 64:

1. С помощью циферблатов вводим делимое (863).

2. Поворачиваем ручку главного приводного колеса по часовой стрелки один раз.

3. С помощью циферблатов вводим делитель (863).

4. Сдвигаем движущуюся часть калькулятора Лейбница на одну позицию влево с помощью вспомогательного приводного колеса.

5. Поворачиваем главное приводное колесо один раз против часовой стрелки и получаем первую часть результата деления - количество оборотов главного приводного колеса, умноженное на разрядность (положение подвижной части калькулятора). Для нашего случая - это 1х10. Таким образом, первая часть результата деления будет равна 10. В окошках результата отобразится остаток от первой операции деления (223).

6. Сдвигаем движущуюся часть калькулятора Лейбница на одну позицию вправо с помощью вспомогательного приводного колеса.

7. Поворачиваем главное приводное колесо против часовой стрелки до тех пор, пока остаток, отображающийся в окошках результата, не станет меньше делителя. Для нашего случая - это 3 оборота. Таким образом, вторая часть результата будет равна 3. Складываем обе части результата и получаем частное (результат деления) - 13. Остаток от деления отображается в окошках результата и составляет 31.

Сложение осуществляется следующим способом:

1. С помощью установки циферблатов в необходимое положение, вводится первое слагаемое

3. Вводится второе слагаемое по той же технологии, как и первое.

4. Еще раз поворачивается ручка главного приводного колеса.

5. В окне результата отображается результат сложения.

Для вычитания необходимо:

1. С помощью установки циферблатов в необходимое положение, вводится уменьшаемое.

2. Поворачивается ручка главного приводного колеса по часовой стрелки один раз.

3. С помощью циферблатов вводится вычитаемое.

4. Поворачивается ручка главного приводного колеса один раз против часовой стрелки.

5. В окне результата отображается результат вычитания.

Несмотря на то, что о машине Лейбница было известно в большинстве стран Европы, она не получила большого распространения из-за высокой себестоимости, сложности изготовления и ошибок, изредка возникающих при переносе разрядов переполнения. Но основные идеи - ступенчатый валик и сдвиг множителя, позволяющие работать с многоразрядными числами, оставили заметный след в истории развития вычислительной техники.

Идеи, изложенные Лейбницем, имели большое количество последователей. Так, в конце 18 века над усовершенствованием калькулятора работали Вагнер и механик Левин, а после смерти Лейбница – математик Тоблер. В 1710 году машину, аналогичную калькулятору Лейбница, построил Буркхардт. Усовершенствованием изобретения занимались и Кнутцен, и Мюллер, и другие выдающиеся ученые того времени.


Следующим шагом было изобретение машины, которая могла выполнять умножение и деление. Такую машину изобрел в 1671 г. немец Готфрид Лейбниц. Хоть машина Лейбница и была похожа на "Паскалину", она имела движущуюся часть и ручку, с помощью которой можно было крутить специальное колесо или цилиндры, расположенные внутри аппарата. Такой механизм позволил ускорить повторяющиеся операции сложения, необходимые для умножения. Само повторение тоже осуществлялось автоматически.

1.2.3. Перфокарты Жаккара

Французский ткач и механик Жозеф Жаккар создал первый образец машины, управляемой введением в нее информацией. В 1802 г. он построил машину, которая облегчила процесс производства тканей со сложным узором. При изготовлении такой ткани нужно поднять или опустить каждую из ряда нитей. После этого ткацкий станок протягивает между поднятыми и пущенными нитями другую нить. Затем каждая из нитей опускается или поднимается в определенном порядке и станок снова пропускает через них нить. Этот процесс многократно повторяется до тех пор, пока не будет получена нужная длина ткани с узором. Для задания узора на ткани Жаккар использовал ряды отверстий на картах. Если применялось десять нитей, то в каждом ряду карты предусматривалось место для десяти отверстий. Карта закреплялась на станке в устройстве, которое могло обнаруживать отверстия на карте. Это устройство с помощью щупов проверяло каждый ряд отверстий на карте. Информация на карте управляла станком.

1.2.4. Разностная машина Чарльза Бэббиджа

В 1822 г. англичанин Чарльз Бэббидж построил счетное устройство, которое назвал разностной машиной. В эту машину вводилась информация на картах. Для выполнения ряда математических операций в машине применялись цифровые колеса с зубьями. Десять лет спустя Бэббидж спроектировал другое счетное устройство, гораздо более совершенное, которое назвал аналитической машиной.

В первой половине XIX века английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство - Аналитическую машину, которая должна была выполнять вычисления без участия человека. Для этого она должна была уметь выполнять программы, вводимые с помощью перфокарт (карт из плотной бумаги с информацией, наносимой с помощью отверстий, как в ткацких станках), и иметь “склад” для запоминания данных и промежуточных результатов (в современной терминологии - память). Бэббидж не смог довести до конца работу - она оказалась слишком сложной для техник того времени.

Друг Бэббиджа, графиня Ада Августа Лавлейс, показала, как можно использовать аналитическую машину машину для выполнения ряда конкретных вычислений. Чарльза Бэббиджа считают изобретателем компьютера, а Аду Лавлейс называют первым программистом компьютера. Даже одини из компьютерных языков был официально назван в честь графини - ADA.

В 1985 г. сотрудники Музея науки в Лондоне решили выяснить наконец, возможно ли на самом деле построить вычислительную машину Бэббиджа. После нескольких лет напряженной работы старания увенчались успехом. В ноябре 1991 г. незадолго до двухсотлетия со дня рождения знаменитого изобретателя, разностная машина впервые произвела серьезные вычисления.

После смерти Бэббиджа умер и его сын, но перед этим он успел построить несколько миникопий разностной машины Бэббиджа и разослать их по всему миру, дабы увековечить эту машину. В октябре 1995 года одна из тех копий была продана на лондонском аукционе австралийскому музею электричества в Сиднее за $200,000.

1.2.5. Герман Холлерит

В конце XIX в. были созданы более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. Это сочетание делало машину настолько работоспособной, что она получила широкое применение в своё время. Например, при переписи населения в США, проведенной в 1890 г., Холлерит, с помощью своих машин, смог выполнить за три года то, что вручную делалось бы в течении семи лет, причем гораздо большим числом людей.

1.2.6. Конрад Цузе

Лишь спустя 100 лет машина Бэбиджа привлекла внимание инженеров. В конце 30-х годов 20 века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. Конрад Цузе создал машину Z3, полностью управляемую с помощью программы.

1.2.7. Говард Айкен

Большой толчок в развитии вычислительной техники дала вторая мировая война: американским военным понадобился компьютер.

В 1944 г. американец Говард Айкен на одном из предприятий фирмы ІВМ построил довольно мощную по тем временам вычислительную машину «Марк-1». В этой машине для представления чисел использовались механические элементы - счетные колеса, а для управления применялись электромеханические реле. Программа обработки данных вводилась с перфоленты. Размеры: 15 X 2,5 м., 750000 деталей. "Марк-1" мог перемножить два 23-х разрядных числа за 4 с.

2. Электронно-вычислительный период

2.1. Аналоговые вычислительные машины (АВМ)

В АВМ все математические величины представляются как непрерывные значения каких-либо физических величин. Главным образом, в качестве машинной переменной выступает напряжение электрической цепи. Их изменения происходят по тем же законам, что и изменения заданных функций. В этих машинах используется метод математического моделирования (создаётся модель исследуемого объекта). Результаты решения выводятся в виде зависимостей электрических напряжений в функции времени на экран осциллографа или фиксируются измерительными приборами. Основным назначением АВМ является решение линейных и дифференцированных уравнений.

Достоинства АВМ:

скорость решения задач, соизмеримая со скоростью прохождения электрического сигнала;

простота

конструкции АВМ;

лёгкость

подготовки задачи к решению;

наглядность

протекания исследуемых процессов, возможность изменения параметров исследуемых процессов во время самого исследования.

Недостатки АВМ:

точность получаемых результатов (до 10%);

алгоритмическая

ограниченность решаемых задач;

ввод решаемой задачи в машину;

объём задействованного оборудования, растущий с увеличением сложности задачи.

2.2. Электронные вычислительные машины (ЭВМ)

В отличие от АВМ, в ЭВМ числа представляются в виде последовательности цифр. В современных ЭВМ числа представляются в виде кодов двоичных эквивалентов, то есть в виде комбинаций 1 и 0. В ЭВМ осуществляется принцип программного управления. ЭВМ можно разделить на цифровые, электрифицированные и счётно-аналитические (перфорационные) вычислительные машины.

ЭВМ разделяются на большие ЭВМ, мини-ЭВМ и микро-ЭВМ. Они отличаются своей архитектурой, техническими, эксплуатационными и габаритно-весовыми характеристиками, областями применения.

Достоинства ЭВМ:

точность вычислений;

универсальность;

автоматический

ввод информации, необходимый для решения задачи;

разнообразие

задач, решаемых ЭВМ;

независимость

количества оборудования от сложности задачи.

Недостатки ЭВМ:

сложность

подготовки задачи к решению (необходимость специальных знаний методов решения задач и программирования);

недостаточная

наглядность протекания процессов, сложность изменения параметров этих процессов;

сложность

структуры ЭВМ, эксплуатация и техническое обслуживание;

требование

специальной аппаратуры при работе с элементами реальной аппаратуры.

Электронно-вычислительную технику принято делить на поколения. Смена поколений связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту вычислительной мощности ЭВМ, т.е. быстродействия и объема памяти, а также происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером. Можно выделить 4 основные поколения ЭВМ.

П О К О Л Е Н И Я Э В М

ХАРАКТЕРИСТИКИ

Годы применения

Основной элемент

Эл. лампа

Транзистор

|Количество ЭВМ в мире (шт.)

Десятки тысяч

Миллионы

Размеры ЭВМ

Значительно меньше

микроЭВМ

Быстродействие(усл)

Носитель информации

Перфокарта, перфолента

Магнитная лента

Гибкий диск