Десульфатирующее зарядное устройство. Приставка к зарядному устройству для десульфатации батарей Импульсное зарядное устройство с функцией десульфатации

Рисунок 4 - Схема зарядного – десульфатирующего автомата для автомобильных аккумуляторов

Принцип работы устройства заклю­чается в следующем:

    Заряд производится на положи­тельной полуволне вторичного на­пряжения.

    На отрицательной полуволне происходит частичный разряд бата­реи за счет протекания тока через на­грузочный резистор.

    Автоматическое включение при падении напряжения за счет самораз­ряда до 12,5 В и автоматическое от­ключение от сети 220 В при достиже­нии напряжения на батарее 14,4 В. Отключение - бесконтактное, по­средством симистора и схемы конт­роля напряжения на батарее.

Важное достоинство метода заклю­чается в том, что пока не подключе­на батарея (автоматический режим), блок не может включиться, что ис­ключает короткое замыкание при за­мыкании проводов, подводящих за­рядный ток к аккумуляторной бата­рее.

Устройство работает от напряжение сети 220 В, которое подается через предохранитель FU1 и симистор VD1 на первичную обмотку си­лового трансформатора. Со вторич­ной обмотки переменное напряжение U n = 21 В выпрямляется диодом VD3 и через балластный резистор R8 со­противлением 1,5 Ом поступает на клемму "+" батареи, к которой под­ключены вольтметр РА1 на 15 В, тум­блер SA2 и схема контроля и управле­ния, представляющая собой триггер Шмитта с гистерезисом около 1,8 В, определяемым падением напря­жения на диодах VD5, VD6 и перехо­де база-эмиттер транзистора VT2. Транзистор VT1 при напряжении на аккумуляторе 12,6 В включается, и через оптрон VD4 включает симистор VD1, что приводит к включению трансформатора Т1 и подаче напря­жения на заряжаемый аккумулятор.

Подключение тумблером SA2 рези­стора R5 обеспечивает асимметричность формы зарядного тока. Резистором R7 устанавливается мо­мент отключения блока, при напряже­нии на вольтметре 15 В. Диодный мост VD2 обеспечивает включение симистора на обеих полуволнах сетевого напряжения и нормальную работу трансформатора.

1.1.5 Цифровое зарядное устройство

Рисунок 5 - Электрическая принципиальная схема цифрового зарядного устройства

Рассмотрим работу цифрового зарядного устройства. На вход счетчика DD1 поступа­ют тактовые импульсы. На выходе DD2 присутствует некоторый дво­ичный код, являющийся номером ка­нала (выводы 12, 13). Этот код поступает на адресный вход мультиплек­сора DD2. Через мультиплек­сор напряжение по­ступает на не инвертирующий вход компаратора DA1 (вывод 3), который сравнивает его с образцовым обратным напряжением (вывод 2), равным выбранному на­пряжению ходе DA1. Ко времени окончания тактового импульса формируется напряжение высокого или низкого логического уровня, которое поступает на вход триггера DD3 и заря­жает его входную емкость. В этот момент через дешифратор на такто­вый вход триггера поступает положительный импульс, произво­дящий запись в триггер информации с его входа. Состояние этого триг­гера остается неизменным до поступ­ления следующего тактового им­пульса, т.е. до повторения адреса. Напряжение с выхода каждого триг­гера поступает на силовые ключи 1VT1 и 1VT2, которые включают зарядный ток, если акку­мулятор, подключенный к этому ка­налу, разряжен. В противоположном случае включается индикатор HL1, который сигнализирует о том, что аккумулятор не заряжается. Импульсы с удвоенной частотой сети поступают с выхода выпрямителя VD1, VD2 через фор­мирователь R14, CI, VT1, R1 на счетный вход DD1, с выходов ко­торого тактовая последователь­ность производит переключение каналов с частотой 6 Гц. При таком выборе тактовой часто­ты переключение каждого канала происходит с частотой 1,5 Гц. Конденсатор С1 необходим для предотвращения сбоев счетчика из-за помех по сети 220 В. Для предотвращения выхода мик­росхем из строя при смене полярности напряжения заряжаемого аккумулятора питание выбрано биполярным. Светодиод HL5, зеленого цвета, яв­ляется индикатором включения уст­ройства в сеть и совместно с резисто­рами R7, R9, R10 образует источник образцового напряжения. На­пряжение на инвертирующем входе 7 компаратора DA1 устанавливается с помощью резистора R9 равным поро­говому напряжению заряженного ак­кумулятора, т.е. 1,43... 1,50 В.Для повышения КПД устройства сглаживание выпрямленного напря­жения фильтрами С8, С9 производится только в цепях питания малой мощ­ности. Напряжение питания мало­мощной части устройства стабилизи­ровано простейшими параметричес­кими стабилизаторами R12, VD3 и R13, VD4.

У частник форума электромобилистов, Курманенко Геннадий Викторович из Днепропетровской области обобщив информацию форума, разработал схему приставки для пульсирующего заряда аккумуляторной батареи. Устройство может не только заряжать аккумулятор импульсами тока, но и контролировать напряжение на аккумуляторе, а при достижении установленного уровня включить пульсирующую добивку с возможностью десульфатации.

Обратите внимание, приставка включается между зарядным устройством и аккумулятором. При этом провода от приставки к аккумулятору должны быть не тоньше проводов от зарядного устройства к приставке и желательно короче. Иначе пульсации зарядного устройства будут вмешиваться в нормальную работу приставки.

Рис.2 Плата печатная

Сразу следует предупредить: Зарядное устройство к которому эта приставка будет подключаться должно выдерживать импульсный режим нагрузки. Возможно какие-то электронные зарядные устройства впадут в депрессию от такого поведения нагрузки, они же расчитывали иметь спокойный и предсказуемый аккумулятор. А тут, аккумулятор то он есть, то его нет.

Геннадий Викторович являясь оператором дефектоскопической установки для проверки рельсов использует приставку для качественного заряда аккумуляторов и востановления потерявших работоспособность. Ранее для заряда аккумуляторов использовались самые простые зарядные устройства прозванные в народе "кипятильниками".

Приступаем к описанию работы схемы устройства.
От провода обозначенного знаком "+" через диод VD1 питание поступает на параметрический (линейный) стабилизатор питания состоящий из резистора R1, конденсатора С2, стабилитрона VD3 (например КС191).
Почему через диод? Нагрузка имеет импульсный характер, диод выполняет функции развязки неспокойного аккумулятора от схемы управления.

Из точки после диода VD1 берем напряжение на анализатор (компаратор) заряженности аккумулятора.
Компаратор состоит из следующих элементов:резисторы R1-R3,R5-R7, конденсатора, интегрального стабилизатора TL431, транзистора VT1.
На базе транзистора VT1 стабилизатор VD2 поддерживает фиксированное напряжение, на эмиттере этого транзистора напряжение меняется пропорционально изменению напряжения на аккумуляторе. При повышении напряжения на аккумуляторе сверх установленного резистором R1, транзистор VT1 закрывается и разблокирует до того заторможенный блокинг-генератор на микросхеме NE555.

Несколько слов о блокинг-генераторе: В начале заряда он блокирован анализатором напряжения, а именно открытым транзистором VT1 закорочен конденсатор C4 и работа генератора невозможна, а выход (3) находится в высоком состоянии.

А теперь о работе той части схемы управления, что называется пульсатором.
На основе микросхемы NE555 реализован генератор с частотой задаваемой в основном конденсатором C4,а также резисторами R8-R10, конденсатора VD4.
Переключатель S1 может переключать вывод 7 микросхемы либо на резистор R8 или диод VD4, что меняет скважность работы генератора. Иными словами, меняет время зарядного импульса и разрядной паузы (или паузы рассасывания).
Автором выбрана частота генератора 0.7 Гц. На мой взгляд этого мало. Надо как минимум в 10 раз меньше. Для этого конденсатор С4 следует увеличить до 100 мкф.
С выхода 3 микросхемы сигнал положительной полярности поступает на базу транзистора VT4, открывает его и аккумулятор подключается к минусовому проводу зарядного устройства, начинается заряд батареи. По истечению установленного времени управляющий импульс снимается, транзистор VT4 закрывается. Но при этом закрывается и транзистор VT2, при этом открывается транзистор VT3, подключающий разрядный резистор Rn. Начинается процесс разряда аккумулятора через этот резистор. Светодиод HL1 индицирует факт разряда.
Резистор R16 служит для обеспечения протекания открывающего тока для транзистора VT3, иначе он не включится.
Таким образом можно констатировать, что положительный импульс микросхемы NE555 (КР1006ВИ1) обеспечивает временной промежуток для заряда аккумулятора, а отрицательный (пауза) импульс обеспечивает временной промежуток для разряда аккумулятора.

Т еперь немного об устройстве микросхемы.
В состав таймера входят два прецизионных компаратора высокого (DA1) и низкого (DA2) уровней, асинхронный RS-триггер DD1, мощный выходной каскад на транзисторах VT1 и VT2, разрядный транзистор VT3, прецизионный делитель напряжения R1R2R3. Сопротивления резисторов R1-R3 равны между собой.

Таймер содержит два основных входа: вход запуска (вывод 2) и пороговый вход (вывод 6). На этих входах происходит сравнение внешних напряжений с эталонными значениями, составляющими для указанных входов соответственно l/3Uпит и 2/3Uпит. Если на входе Unop (6) действует напряжение меньше 2/3Uпит, то уменьшение напряжения на входе Uзап (2) до значения, меньшего 1/3Uпит, приведет к установке таймера в состояние, когда на выходе (вывод 3) имеется напряжение высокого уровня. При этом последующее повышение напряжения на входе Uзап (2) до значения 1/3Uпит и выше не изменит состояния таймера. Если затем повысить напряжение на выходе Uпop (6)до значения больше 2/3 Uпит, то сработает триггер DD1 и на выходе таймера (3) установится напряжение низкого уровня, которое будет сохраняться при любых последующих изменениях напряжения на входе Uпop (6). Этот режим работы таймера обычно используют при построении реле времени, ждущих мультивибраторов. При этом вход Unop (6) подключают к одной из обкладок конденсатора времязадающей цепи, а по входу Uзап (2) производят запуск таймера подачей короткого импульса отрицательной полярности. Если необходимо создать автоколебательный мультивибратор, то оба входа объединяют. Транзистор VT3 (7) служит для разрядки времязадающего конденсатора. При появлении напряжения высокого уровня на выводе 3 таймера этот транзистор открывается и соединяет обкладку конденсатора с общим проводом.
Если на запускающем входе напряжение не превышает l/3Uпит, то повышение напряжения на входе Unop выше 2/ЗUпит приведет к появлению низкого напряжения на выходе таймера, а понижение напряжения на этом входе ниже 2/ЗUпит установит высокое напряжение на выходе. Таким образом, в данном случае таймер работает как обычный компаратор и может быть использован в устройствах регулирования температуры, автоматического включения освещения и др.
Если на входе Unop напряжение превышает 2/3Uпит, то на выходе таймера будет низкое напряжение независимо от значения напряжения на входе Uзап. В заключение следует отметить, что напряжение питания таймера может находиться в пределах 5...15 В.
Максимальный выходной ток таймера равен 100 мА. Это позволяет использовать в качестве нагрузки электромагнитное реле. Вывод 5 служит для контроля значения образцового напряжения, а также для возможного изменения его значения путем подключения внешних резисторов. Для уменьшения возможного действия помех этот вход обычно соединяют с общим проводом через конденсатор емкостью 0,01...0,1 мкФ. Вход Uc6p (вывод 4) позволяет устанавливать на выходе низкое напряжение независимо от сигналов на остальных входах. Для этого на вывод 4 следует подать напряжение низкого уровня. Последующее повышение напряжения на этом входе до напряжения высокого уровня приводит к установлению на выходе таймера состояния, которое было до подачи низкого напряжения на вход 4 (имеется в виду, что времязадающая цепь не подключена). Если этот вход не используется, его следует соединить с выводом 8. В схемах реле времени вход Uсбр часто используют для установки таймера в исходное состояние, соответствующее закрытому транзистору VT3.

Недавно собрал зарядно-десульфатирующий автомат, практически под все 12-ти вольтовые аккумуляторы, так как есть плавная регулировка тока. Автомат успешно заряжает как гелевые АБ 12В 4,5А/ч для безперебойника, так и аккумуляторные батареи для автомобиля - 80А/ч. Не содержит дорогих и дефицитных деталей и нескложен в сборке. Выкладываю схему и фото внешнего вида ЗУ.

Рисунки печатных плат десульфатирующего показаны ниже. Если требуется - их в формате Lay.


Модуль контроля напряжения


Для более стабильной работы автомата поставил маленький кулер от процессора, что вполне оправдало себя. Теперь температура стабильная, а значит и параметры заряда практически не меняются от нагрева.


При выборе схемы хотелось сделать полный автомат и обязательно с десульфатацией, чтобы заряжал асиметричным током. Данный зарядный автомат работает стабильно, испытывал 3 недели в непрерывном цикле. Функция десульфации тоже работает исправно - вылечил один аккумулятор, который начал брать ток и держать ёмкость.


Микросхема 554СА3 здесь работает стабильно, особенно если грамотно и чётко настроить. При проектировании устройства учтите, что тепла эта микросхема не любит, её нужно устанавливать в том месте, где тепло не доходит. Желательно внизу и подальше от греющихся резисторов.


Корпус десульфатирующего ЗУ можно использовать металлический, а можно и из прочной пластмассы. Естественно надо предусмотреть отверстия для вентиляции.

Есть несколько распространенных ошибок у автомобилистов, связанных с обслуживанием аккумуляторной батареи, особенно у начинающих. Во-первых , считают, что если автомобиль новый, то зачем что-то смотреть – ведь машина заводится?

Во-вторых , если аккумулятор был приобретен только в прошлом году – он же новый и на гарантии? В-третьих , производитель аккумуляторов должен был все предусмотреть. Это типичные ошибки в суждениях, которые могут стоить ровно столько, сколько стоит новый аккумулятор.

Сульфатация пластин аккумулятора что это такое

При разряде аккумулятора происходит естественный процесс сульфатации активной массы аккумуляторных пластин. При этом образуется сульфат свинца тонкокристаллической структуры, которая растворяется при заряде аккумулятора.

Но если режим работы аккумулятора таков, как описано ниже, то возникает иного вида сульфатация. Возникающие крупные кристаллы сульфата свинца изолируют активную массу.

Чем больше образовалось этих кристаллов, тем меньше рабочей поверхности активной массы, следовательно, и емкости аккумулятора . Внешне их видно как белый налет на свинцовых пластинах.

Какие же есть опасности для нормального функционирования аккумуляторной батареи? Давайте разберемся сразу. Вы ездите, и никаких проблем в отношении аккумулятора не было?

О причинах сульфатации аккумуляторных батарей, видео.

Основные причины сульфатации

  • Как минимум осенью и весной снимаете аккумулятор, производите его зарядку и следите за плотностью электролита по сезону, если нет это первая причина.
  • Ездите каждый день, машина на стоянке по полмесяца не стоит, и двигатель с момента как его завели, до момента как его заглушили, работает на средних оборотах минимум полчаса, если нет, это вторая причина.
  • А в пробки не попадаете, и двигатель не перегревается, если нет, это третья причина.
  • При остановке автомобиля свет всегда отключаете, если нет это четвертая причина.

Это названы основные причины, которые могут привести к такому печальному явлению, как сульфатация аккумулятора.

Если же аккумулятор сульфатирован, нет необходимости сразу идти выбирать новый. Попытайтесь его восстановить. Эта процедура занимает довольно много времени, но не сложная, как кажется на первый взгляд. Для этого потребуется ареометр, зарядное устройство и измерительный прибор, позволяющий измерять напряжение и силу тока.

Десульфатация аккумулятора зарядным устройством

Решение вопроса по восстановлению аккумулятора бесперебойного питания.

Снимите аккумулятор с машины. Откройте пробки. Доведите до нужного уровня электролит, если надо, при помощи дистиллированной воды.